
1

How to write, how to execute, and how to use in real life

Ansible Best Practices

2

GENERAL TIPS TO USE ANSIBLE

How to use

Treat your Ansible content like code

AUTOMATION IS CODE

3

● Version control your Ansible content

● Iterate

○ Start with a basic playbook and static inventory

○ Refactor and modularize later

Do it with style

CODE NEEDS TO HAVE STYLE GUIDELINES

4

● Create a style guide for consistency:

○ Tagging

○ Whitespace

○ Naming of Tasks, Plays, Variables, and Roles

○ Directory Layouts

● Enforce the style

● Nice example: openshift-ansible Style Guide

example: https://goo.gl/JfWBcW

CODE MUST BE
ORGANIZED

USE GIT!

6

site.yml # master playbook, calling others

webservers.yml # playbook for webserver tier

deployonce.yml # separate playbook for single-shot tasks

inventories/

 production/ # different stages via inventory

 hosts # inventory file for production servers

 group_vars/

 host_vars/

 london/ # additional, alternative grouping if useful

roles/

 requirements.yml # includes roles from some other place

 common/ # base line, company wide configuration

 webtier/

Do it with style

Start with one Git repository - but when it grows,
use multiple!

GIT - ONE OR MANY?

7

At the beginning: put everything in one Git repository

In the long term:

● One Git repository per role

● Dedicated repositories for completely separated teams / tasks

New to git? Get your cheat sheet here: https://opensource.com/downloads/cheat-sheet-git

SO, WHAT DO
WE HAVE?

Give inventory nodes human-meaningful names rather than
IPs or DNS hostnames.

USE READABLE INVENTORY NAMES

9

10.1.2.75
10.1.5.45
10.1.4.5
10.1.0.40

w14301.acme.com
w17802.acme.com
w19203.acme.com
w19304.acme.com

db1 ansible_host=10.1.2.75
db2 ansible_host=10.1.5.45
db3 ansible_host=10.1.4.5
db4 ansible_host=10.1.0.40

web1 ansible_host=w14301.acme.com
web2 ansible_host=w17802.acme.com
web3 ansible_host=w19203.acme.com
web4 ansible_host=w19203.acme.com

Group hosts for easier inventory selection and less
conditional tasks -- the more the better.

TAKE ADVANTAGE OF GROUPING

10

[db]
db[1:4]

[web]
web[1:4]

[dev]
db1
web1

[testing]
db3
web3

[prod]
db2
web2
db4
web4

[east]
db1
web1
db3
web3

[west]
db2
web2
db4
web4

Use dynamic sources where possible. Either as a single
source of truth - or let Ansible unify multiple sources.

COMBINE ALL INVENTORY SOURCES

11

● Stay in sync automatically

● Reduce human error

● No lag when changes occur

● Let others manage the inventory

VARIABLES

JUST WORDS,
RIGHT?

Proper variable names can make plays more readable and
avoid variable name conflicts

DESCRIBE VARIABLES WITH THEIR NAMES

13

a: 25
data: ab
data2: abc
id: 123

apache_max_keepalive: 25
apache_port: 80
tomcat_port: 8080

Avoid collisions and confusion by adding the role name to a
variable as a prefix.

PREFIX ROLE VARIABLES

14

apache_max_keepalive: 25
apache_port: 80
tomcat_port: 8080

Know where your variables are

PLACE VARIABLES APPROPRIATELY

15

● Find the appropriate place for your variables based on what, where and

when they are set or modified

● Separate logic (tasks) from variables and reduce repetitive patterns

● Do not use every possibility to store variables - settle to a defined scheme

and as few places as possible

MAKE YOUR PLAYBOOK
READABLE

NO!

USE NATIVE YAML SYNTAX

17

- name: install telegraf
 yum: name=telegraf-{{ telegraf_version }} state=present update_cache=yes enablerepo=telegraf
 notify: restart telegraf

- name: start telegraf
 service: name=telegraf state=started

Better, but no

USE FOLDING ONLY IF REALLY REQUIRED

18

- name: install telegraf
 yum: >
 name=telegraf-{{ telegraf_version }}
 state=present
 update_cache=yes
 enablerepo=telegraf
 notify: restart telegraf

- name: start telegraf
 service: name=telegraf state=started

Yes!

USE KEY:VALUE PAIRS

19

- name: install telegraf
 yum:
 name: “telegraf-{{ telegraf_version }}”
 state: present
 update_cache: yes
 enablerepo: telegraf
 notify: restart telegraf

- name: start telegraf
 service:
 name: telegraf
 state: started

Exhibit A

DO NOT OMIT THE TASK NAME

20

- hosts: web
 tasks:
 - yum:
 name: httpd
 state: latest

 - service:
 name: httpd
 state: started
 enabled: yes

PLAY [web]

TASK [setup]

ok: [web1]

TASK [yum]

ok: [web1]

TASK [service]

ok: [web1]

Exhibit B

USE TASK NAMES

21

- hosts: web
 name: installs and starts apache

 tasks:
 - name: install apache packages
 yum:
 name: httpd
 state: latest

 - name: starts apache service
 service:
 name: httpd
 state: started
 enabled: yes

PLAY [install and starts apache]

TASK [setup]

ok: [web1]

TASK [install apache packages]

ok: [web1]

TASK [starts apache service]

ok: [web1]

POWERFUL
BLOCKS

Blocks can help in organizing code, but also enable
rollbacks or output data for critical changes.

USE BLOCK SYNTAX

23

- block:
 copy:
 src: critical.conf
 dest: /etc/critical/crit.conf
 service:
 name: critical
 state: restarted
 rescue:
 command: shutdown -h now

24

EXECUTING THE ANSIBLE COMMANDS

How to execute

PROPER
LAUNCHING

Ansible provides multiple switches for command line
interaction and troubleshooting.

TROUBLESHOOT ON EXECUTION

26

-vvvv
--step
--check
--diff
--start-at-task

Ansible has switches to show you what will be done

ANALYZE WHAT YOUR ARE RUNNING

27

Use the power of included options:
--list-tasks
--list-tags
--list-hosts
--syntax-check

If there is a need to launch something without an inventory
- just do it!

QUICKLY LAUNCH WITHOUT INVENTORY

28

● For single tasks - note the comma:
ansible all -i neon.qxyz.de, -m service -a
"name=redhat state=present"

● For playbooks - again, note the comma:
ansible-playbook -i neon.qxyz.de, site.yml

THE RIGHT
TOOLS

Don’t just start services -- use smoke tests

CHECK IMMEDIATELY WHAT WAS DONE

30

- name: check for proper response
 uri:
 url: http://localhost/myapp
 return_content: yes
 register: result
 until: '"Hello World" in result.content'
 retries: 10
 delay: 1

Try to avoid the command module - always seek out a
module first

USE NATIVE MODULES WHERE POSSIBLE

31

- name: add user
 command: useradd appuser

- name: install apache
 command: yum install httpd

- name: start apache
 shell: |
 service httpd start && chkconfig
httpd on

 - name: add user
 user:
 name: appuser
 state: present

 - name: install apache
 yum:
 name: httpd
 state: latest

 - name: start apache
 service:
 name: httpd
 state: started
 enabled: yes

If managed files are not marked, they might be overwritten
accidentally

MARK MANAGED FILES

32

● Label template output files as being generated by Ansible
● Use the ansible_managed** variable with the comment filter

{{ ansible_managed | comment }}

ROLES AND
GALAXIES

Roles enable you to encapsulate your operations.

USE ROLES WHERE POSSIBLE

34

● Like playbooks -- keep roles purpose and function focused
● Store roles each in a dedicated Git repository
● Include roles via roles/requirements.yml file, import via

ansible-galaxy tool
● Limit role dependencies

Get roles from Galaxy, but be careful and adopt them to
your needs

USE GALAXY - WITH CARE

35

● Galaxy provides thousands of roles
● Quality varies drastically
● Take them with a grain of salt
● Pick trusted or well known authors

ACCESS RIGHTS

Root access is harder to track than sudo - use sudo
wherever possible

USE BECOME, DON’T BE A ROOT

37

● Ansible can be run as root only
● But login and security reasons often request non-root access
● Use become method - so Ansible scripts are executed via sudo

(sudo is easy to track)
● Best: create an Ansible only user
● Don’t try to limit sudo rights to certain commands - Ansible does

not work that way!

DEBUG YOUR
PROBLEM

Check logging on target machine

HAVE A LOOK AT THE NODE LEVEL

39

ansible-node sshd[2395]: pam_unix(sshd:session): session
 opened for user liquidat by (uid=0)
ansible-node ansible-yum[2399]: Invoked with name=['httpd']
 list=None install_repoquery=True conf_file=None
 disable_gpg_check=False state=absent disablerepo=None
 update_cache=False enablerepo=None exclude=None

How to keep the code executed on the target machine

IN WORST CASE, DEBUG ACTUAL CODE

40

Look into the logging of your target machine

 $ ANSIBLE_KEEP_REMOTE_FILES=1 ansible target-node -m yum
 -a "name=httpd state=absent"

Execute with:

 $ /bin/sh -c 'sudo -u $SUDO_USER /bin/sh -c
 "/usr/bin/python /home/liquidat/.ansible/tmp/..."

Debugging tasks can clutter the output, apply some
housekeeping

USE THE DEBUG MODULE

41

- name: Output debug message
 debug:
 msg: "This always displays"

- name: Output debug message
 debug:
 msg: "This only displays with ansible-playbook -vv+"
 verbosity: 2

42

GET TOWER TO ADOPT ANSIBLE IN YOUR DATA CENTER

How to use in real
life

Simple: Use Tower.

TOWER FUNCTIONS

43

● Tower was developed with Ansible in mind
● Extends the limits of Ansible to meet enterprise

needs:
Scalability, API, RBAC, audits, etc.

Tower has inbuilt help

TOWER FUNCTIONS

44

● Tower provides in-program help via
questionmark bubbles

● Can include examples or links to further docs

BRANCHES, ANYONE?

Tower can import a repository multiple times with different
branches

TAKE ADVANTAGE OF GIT BRANCHES

46

● Use feature or staging branches in your Git
● Import them all separately, address them separately
● Useful for testing of new features but also to move changes

through stages

MANY, MANY ROLES

Tower automatically imports Roles during Project update

TOWER & ROLES

48

● Do not copy roles into your playbook repository, just create a
roles/requirements.yml

● Tower will automatically import the roles during Project
installation

● Mix roles from various sources
● Fix version in roles/requirements.yml to have auditable

environment!

WHAT ARE WE
TALKING TO?

Use dynamic & smart inventories

TOWER FUNCTIONS

50

● Combine multiple inventory types
● Let Tower take care of syncing and caching
● Use smart inventories to group nodes

QUICK TIP
Try right clicking on the icon and using
“Replace Image” to insert your own icons.

DOING GOOD JOBS

Tower job templates provide multiple options - use them
wisely

USE THE POWER OF JOB TEMPLATES

52

● Keep jobs simple, focussed - as playbooks or roles
● Add labels to them to better filter
● For idempotent jobs, create “check” templates as well - and let

them run over night
● Combine with notifications - and get feedback when a “check”

failed

1+1+1 = 1

Multiple playbooks can be combined into one workflow

USE WORKFLOWS FOR COMPLEX TASKS

54

● Simple jobs, complex workflows
● React to problems via workflow
● Combine playbooks of different teams, different repositories
● Re-sync inventories during the play

DO ASK PROPER QUESTIONS

Use surveys to get variable values

TOWER FUNCTIONS

56

● Use good, meaningful variable names
● Provide a default choice
● Multiple choice > free text
● If answer not required - do you really need it at

all?

QUICK TIP
Try right clicking on the icon and using
“Replace Image” to insert your own icons.

A POWERFUL
TEAM

Tower provides tenants, teams, and users - use them for
separation

USE TOWER TEAMS, SEPARATIONS

58

● Provide automation to others without exposing credentials
● Let others only see what they really need
● Use personal view instead of full Tower interface

ONE KEY TO RULE
THEM ALL ...

Tower credentials should only be used by Tower - not by
others

USE TOWER SPECIFIC ACCESS CREDENTIALS

60

● Set up a separate user and password/key for Tower
● That way, automation can easily be identified on target machines
● The key/password can be ridiculously complicated secure
● Store key/password in a safe for emergencies

NOTIFY YOURSELF!

Tower can send notifications if a job succeeds, fails or
always - as mail, IRC, web hook, and so on

LET TOWER SEND NOTIFICATIONS TO YOU

62

● Let Tower notify you and your team if something breaks
● Send mails/web-hooks automatically to a ticket systems and

monitoring if there is a serious problem

LOGS, ANYONE?

Send all logs from Tower to central logging

CONNECT TOWER TO CENTRAL LOGGING

64

● Splunk, Loggly, ELK, REST
● Send results from Ansible runs - but also from Tower changes

ALWAYS KEEP
THE LIGHTS ON

Tower can be easily set up HA - and for restricted networks,
deploy isolated nodes

USE HA, DEPLOY ISOLATED NODES

66

● Make Tower HA - it is easy! (Well, except the DB part maybe….)
● For distant or restricted networks, use isolated nodes

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

67

