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ABSTRACT

In this thesis we use the design science research method to develop an IOT
device capable of documenting road safety and the attractiveness of cycling.
This is done by automatically mapping the availability and quality of cy-
cling infrastructure using modern 60GHz radar technology. These low-cost,
high-performance radars are capable of measuring the distance and speed of
passing cars up to 40 times per second. We are undertaking three successive
development iterations, improving on the results of the previous evaluation.
A key objective is to enable the prototype to operate without user interven-
tion while the cyclist is riding. This requires sophisticated signal processing
to detect cars and measure accurate distances at short duty cycles. In ad-
dition, the collected data should be transmitted via Bluetooth to the user’s
mobile phone for temporary storage. After each trip, the collected positions,
speeds and distances are sent to a scalable infrastructure that enables collab-
orative data collection for in-depth analysis. This data can be used to identify
safer routes and highlight necessary improvements to cycle routes, support-
ing urban development by prioritising roads with the best cost-benefit ratio.
To do this, we used a clustering algorithm to find roads and locations with a
significantly higher incidence of close encounters. All of this was validated
through a series of experimental setups, culminating in a two-month deploy-
ment of the functional prototype in real-world traffic conditions. In the end,
the data highlighted three distinct locations. Despite a lack of urban plan-
ning expertise, at least the reason why these locations were identified seems
obvious, suggesting that the data and the sensor are promising. Concluding
the thesis with a discussion of the limitations of the prototype and the future
work that is required to make it a viable product, and to increase the user
incentives to actually use it.






ZUSAMMENFASSUNG

In dieser Arbeit nutzen wir die Forschungsmethode der Design Science, um
ein IOT-Geridt zu entwickeln, das die Verkehrssicherheit und die Attrakti-
vitdt des Radfahrens dokumentieren kann. Dies geschieht durch die auto-
matische Kartierung der Verfiigbarkeit und Qualitdt der Radverkehrsinfra-
struktur mithilfe moderner 60-GHz-Radartechnologie. Diese kostengiinsti-
gen und leistungsstarken Radargeréte sind in der Lage, den Abstand und
die Geschwindigkeit von vorbeifahrenden Autos bis zu 40 Mal pro Sekun-
de zu messen. Wir fithren drei aufeinanderfolgende Entwicklungsschritte
durch, um die Ergebnisse der vorangegangenen Bewertung zu verbessern.
Ein Hauptziel ist es, den Prototyp so zu gestalten, dass er ohne Benutzerein-
griff funktioniert, wahrend der Radfahrer fahrt. Dies erfordert eine ausgeklii-
gelte Signalverarbeitung, um Autos zu erkennen und genaue Entfernungen
bei kurzen Tastverhiltnissen zu messen. Aufierdem sollen die gesammelten
Daten tiber Bluetooth auf das Mobiltelefon des Benutzers tibertragen und
dort zwischengespeichert werden. Nach jeder Fahrt werden die gesammel-
ten Positionen, Geschwindigkeiten und Entfernungen an eine skalierbare
Infrastruktur gesendet, die eine kollaborative Datenerfassung zur eingehen-
den Analyse ermoglicht. Diese Daten konnen genutzt werden, um sichere-
re Routen zu identifizieren und notwendige Verbesserungen an Radwegen
aufzuzeigen, um die Stadtentwicklung zu unterstiitzen, indem Strafsen mit
dem besten Kosten-Nutzen-Verhiltnis priorisiert werden. Zu diesem Zweck
haben wir einen Clustering-Algorithmus verwendet, um Straflen und Orte
mit einer signifikant hoheren Haufigkeit von engen Begegnungen zu finden.
All dies wurde durch eine Reihe von Versuchsanordnungen validiert, die in
einem zweimonatigen Finsatz des funktionalen Prototyps unter realen Ver-
kehrsbedingungen gipfelten. Am Ende ergaben die Daten drei verschiedene
Standorte. Auch wenn es an stddtebaulichem Fachwissen mangelt, scheint
zumindest der Grund, warum diese Orte identifiziert wurden, offensichtlich
zu sein, was darauf hindeutet, dass die Daten und der Sensor vielverspre-
chend sind. Die Arbeit schliefit mit einer Diskussion der Grenzen des Pro-
totyps und der zukiinftigen Arbeit, die erforderlich ist, um ihn zu einem
brauchbaren Produkt zu machen und die Anreize fiir die Benutzer zu erho-
hen, ihn tatsichlich zu benutzen.
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INTRODUCTION

The bicycle shows great potential to help building environmentally friendly
and healthy cities [23]. One prominent factor that affects the usage of bicycles
is the provided bicycle infrastructure. Compared to other European coun-
tries the german bicycle infrastructure is already in relatively good shape,
however countries dedicated to providing a high quality bicycle infrastruc-
ture, such as the Netherlands, show a much higher daily bicycle usage. In
Figure 1.1(a) about 70% of the people questioned in the netherlands claimed
to use the bicycle at least a few times a week. In Germany close to 50%
stated to cycle a few times a week. However a more recent survey from 2020
shown in Figure 1.1(b) concluded that only 36% of the german people claim
to use the bicycle twice or more per week for transportation. This difference
could be due to the slightly different question, or indicate a reduced bicy-
cle usage. In both surveys the Netherlands is the country with the highest
percentage of people cycling regularly. This could indicate that the bicycle
infrastructure in the Netherlands is of higher quality and the people are
more willing to use it. This is supported by the results of other researchers
that concluded , The most important approach to making cycling safe and
convenient in Dutch, Danish and German cities is the provision of separate
cycling facilities along heavily travelled roads and at intersections, combined
with extensive traffic calming of residential neighbourhoods” [26, p.523] Ad-
ditionally, Destatis published in 2021 that in 71,9% of bicycle accidents in
Germany, a car was the opponent of the bicyclist [1]. At the same time the
bicyclist was responsible in only 25% of those accidents with a car involved.
This could indicate that either the availability or visibility of bicycle infras-
tructure is not sufficient resulting in the bicyclists being overlooked while
having to share a lane with cars. Besides the possible induced demand [20],
resulting in increased usage of bicycles, there are more desirable side effects
of improving the biking infrastructure in cities [22].

Projects such as the SimRaApp * and the OpenBikeSensor (OBS) * have al-
ready shown their potential in 2022 by winning the german bicycle price in
the category service and communication [9]. Those projects mapped the bicy-
cle infrastructure by measuring the distance of cars overtaking the bicyclist.
Other projects tried to use public data sources to calculate the ,bikeability
of urban infrastructure” [15]. One of the most important factors determined
was the availability of ,biking facilities along main streets”. This approach
offers the option to dedicate the available funds into projects having the
biggest impact. By identifying the areas where people already bike regu-

1 https://play.google.com/store/apps/details?id=de.tuberlin.mcc.simra.app
2 https://www.openbikesensor.org/
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larly but lack critical infrastructure the impact of the available funds can be
maximized.
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Figure 1.1: Survey results from 2013 (a) [11] and 2020 (b) [17]. The Netherlands lead
in every survey in regards to regular bike usage. This correlates with the
high quality of the bicycle infrastructure in the Netherlands.

1.1 OBJECTIVES AND METHOD

The objective of this thesis is to develop a prototype using the Design Science
Research (DSR) method [32]. The development process will be iterative, with
each cycle evaluated to guide the next iteration and add new knowledge
to the corpus. Figure 3.2 in [16, P.27] illustrates a typical DSR iteration from
problem identification to conclusion and knowledge extraction.

To ensure the success of the project, it is important to identify relevant
metrics before beginning the implementation phase, as emphasized by [32, p.
18]. Furthermore, research questions and experiments that guide the project
must be defined, and can be either quantitative (e.g. ,What is the range of
our sensor?”), exploratory (e.g. ,Where are dangerous areas?”), or hypothesis-
based (e.g. ,During the commute hours, cycling is more dangerous”).

Given the time constraints of a 6-month timeline, the development sched-
ule includes the following segments:

1. Initial research and hardware selection

2. First development iteration
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3. Second development iteration
4. Third development iteration
5. Data collection while setting up the backend

6. Data analysis and remaining tasks

The structure of this thesis follows this schedule accordingly.

1.2 METRICS

In DSR, it is crucial to define a set of metrics and experiments to evaluate the
working prototype developed in each iteration. This ensures that the devel-
opment is on the right track, potential issues are identified, and knowledge
is extracted from the evaluation. In this section, we define the metrics for
evaluating the working prototype of the sensor developed in this study.

1.2.1 Distance and Range

The first metric we consider is the accuracy and range of the distance mea-
surements. The sensor should be able to measure distances up to 3m, which
is the typical street width in Germany where the experiments will be per-
formed. Depending on the speed limit, the street width may be regulated to
be between 2.5m and 3.5m. The error in accuracy should be below 5%.

To evaluate this metric, we will use a static experimental setup. The sensor
should be placed in front of relevant targets to obtain a reference distance
measurement. Then, a series of measurements should be obtained at each
distance, starting from 0.5m and ending with 3m, incrementing in 0.5m steps.
The error should be calculated by comparing the reference measurement
with the obtained measurements.

1.2.2 Vehicle Detection

Since one of the main goals is to automatically detect passing vehicles, in-
stead of having the user manually trigger the measurement, the sensor should
be able to detect vehicles automatically. The sensor should be able to detect
vehicles with a speed of at least 50km /h, the common speed limit in cities.
The detection should be reliable, i.e. the sensor should not falsely detect a ve-
hicle when there is none. A false negative is acceptable, i.e. the sensor should
not detect a vehicle when there is one, but it would be desirable to minimize
this error. In order to evaluate this metric an experimental setup should be
used, where the sensor is mounted on a bicycle and cars are driven past the
sensor, while the timestamps of the measurements are recorded. The detec-
tion should be evaluated by comparing the timestamps of the measurements
with the timestamps of the cars passing the sensor.
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1.2.3 Real-world Environment

Since the sensor is intended to be used in traffic, we need to evaluate its use
in the real world. To achieve this, the sensor should be mounted on a bicy-
cle, and a predefined route should be test-driven multiple times, featuring
different cycling infrastructure. A camera should record the trip to obtain a
reference for passing cars and evaluate unexpected measurements and iden-
tify possible flaws. This experiment evaluates the reliability of the sensor in a
real-world environment and additionally allows to show possible advanced
analysis methods of the collected data, currently not done by the OBS project.
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This chapter provides an overview of the different types of sensor technolo-
gies available and their principles, including their advantages and draw-
backs. Depending on the selected sensor, this chapter will also present the
relevant types of signal processing algorithms that may be required to achieve
the goal of this project. For a brief overview of the different types of sensor,
see [30, Figure 20], which offers spider diagrams for light imaging, detection
and ranging (Lidar), Radar, Ultrasonic sensors, and cameras.

2.1 TOF-SENSORS

A common method for digitally measuring distance is through time of flight
(TOF) technology, which involves measuring the time it takes for a signal to
travel from the sensor to an object and back. This is usually done by emitting
a signal that is reflected by the object and received by the sensor. The time
it takes for the signal to travel from the sensor to the object and back is then
used to calculate the distance based on the speed of the signal. The distance
can be calculated using the formula d = § - v, where ¢ is the time measured
and v is the propagation speed of the emitted signal.

2.1.1  Ultrasonic sensors

Ultrasonic sensors are a type of TOF sensor that use sound waves as the
emitted signal. They work by emitting a sound wave, which is reflected by
an object and received by the sensor. The time it takes for the sound wave
to travel from the sensor to the object and back is then used to calculate
the distance based on the speed of sound. The distance can be calculated
using the formula d = % -0, where t is the time measured and v is the
propagation speed of sound in air. The approximate speed of sound, which
is sufficient for distance calculation is v ~ 340". This means that the signal
travels approximately 10ms for a distance of 1.7m.

One advantage of ultrasonic sensors is that they are relatively low cost,
with prices ranging from a few euros per unit. They are also accurate and
precise enough for many use cases, including the presented goal in Chap-
ter 1, with a deviation in distance measurements of around a few millime-
ters [7, Fig. 3]. However, a major drawback of ultrasonic sensors is that they
require a clear line of sight and have limited resolution. Additionally, ultra-
sonic sensors emit sound waves that cannot be heard by humans, but may
be audible to animals such as cats and dogs. This can potentially cause stress
or irrational behavior in these animals, leading to potentially dangerous sit-
uations.
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2.1.2 Laser sensors

Laser sensors are a type of TOF sensor that utilize laser beams as the emitted
signal. They can be divided into two types: simple laser sensors and Lidar
sensors. Simple laser sensors emit a single beam in a fixed direction and
measure the time until it returns. Lidar sensors, on the other hand, use a ro-
tating mirror to emit beams in multiple directions, allowing them to measure
the distance in various directions and angles and produce a representation
of the surrounding area. While sophisticated Lidar sensors offer very fine res-
olution, they tend to be relatively expensive and bulky due to the rotating
mechanism. Like ultrasonic sensors, laser sensors also require a clear line of
sight.

Relevant signal processing algorithms for laser sensors may include doppler
lidar, range calculation, and error correction [31]. Doppler Lidar utilizes the
doppler shift of the reflected light to calculate the movement speed of the
object along the line of sight, while range calculation involves using the time
of flight information to calculate the distance to the object. Error correction
algorithms may be used to improve the accuracy of the distance measure-
ments by taking into account factors such as the wavelength of the laser and
the refractive index of the medium through which the signal is traveling.
For the intended use case an approximation of ¢ &~ 3 - 1082 is expected to
be precise enough. While sophisticated Lidar sensors are relatively large and
expensive, simple laser sensors on the other hand, are cheap and could be
considered as a viable option.

2.1.3 Radar sensors

Radar sensors are a type of TOF sensor that use radio waves as the trans-
mitted signal, and were originally patented in 1904. One advantage of radar
sensors is that the refractive effect of the Earth’s atmosphere can be neglected
in the measurements due to its small effect, so that the approximate speed
of light ¢ ~ 31082 can be used as the value for v in the distance calculation
formula d = % -0 [28, p.3]. However, a more accurate value for v may be re-
quired for very high accuracy. Compared to the ultrasonic sensor, the signal
propagation speed of radar sensors is much higher, which means that the
time it takes for the signal to travel from the sensor to the object and back
is much shorter. For example, the propagation time for a distance of 1.5m is
now only 10ns. Depending on the type of radar, the transmitted signal may
be reflected by the object before the original transmission is complete. For
pulsed coherent radars, this means that there is a direct scattering loss that re-
sults in a blind spot near the sensor, depending on the pulse length. A longer
pulse length is required for better Signal to Noise Ratio (SNR) and for mea-
surements over longer distances. As a general rule for Pulsed-Cohrent-Radar
(PCR), better SNR is associated with lower resolution and lower measurement
frequency. A Frequency-Modulated-Continuous-Wave (FMCW) radar, on the
other hand, continuously modulates the frequency and is able to receive the
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reflected signal even if the transmission is not complete. This is achieved by
filtering the received signal, which is based on the subtraction of the trans-
mitted signal from the received signal. This is possible because the received
signal has a different frequency than the signal just transmitted.

Radar sensors are available in a wide range of wavelengths, allowing an
optimal approach for the particular application. The wavelength of the emit-
ted signal can affect both the measurement accuracy and the power con-
sumption of the sensor. The energy of a photon is directly proportional to
its frequency, with the relationship E = h - f, where h is Planck’s constant.
Given the fixed propagation speed of electromagnetic waves, the frequency
of the signal is directly related to the wavelength A = J% A longer wavelength
requires less energy but has a lower intrinsic precision [27].

There are several methods for detecting targets using radar, as described
in [28, chap. 6]. All of these methods assume that the reflection has a rea-
sonably high SNR. The idea is to compare the received reflection with a fixed
or relative threshold. The expected reflection depends on the material, dis-
tance, size and shape of the target. While the relative dielectric constant of
materials, and thus the reflectivity, depends on the frequency of the signal,
metal can be considered absolutely reflective for all commercially available
frequencies. Furthermore, the effective radar cross-section of simple metal
objects, such as the side of a car, can be approximated by ¢ = 47;342, where
A is the area of the metal side when hit near 90 deg. With this reflection
property, the expected received signal P, can be calculated using the radar
equation P, = 1?4%27 'I?{ . Lt‘%‘atml where P, is the transmitter power, G; is the
gain of the transmitter and R is the distance to the target. L; and L, are
constant losses due to the antenna L; and L,y [21]. This received signal can
then be compared to either a fixed threshold or a threshold calculated or
measured based on the noise level. Since the signal propagates in a three-
dimensional space, the expected reflectance decreases with distance accord-
ing to the inverse square law represented by the term R* in the equation. The
distance of the object can be taken into account as a factor when calculating
the threshold. Since the radar equation is affected by several radar proper-
ties, there is no general guideline for the configuration of the radar. All pa-
rameters, such as gain, transmit power and others, must be considered and
evaluated individually for each application. Advantages and disadvantages
must be carefully weighed to achieve the desired results. For example, while
high transmit power significantly improves the SNR, it increases the pulse
length while keeping the system’s power consumption constant. This means
a larger blind spot for PCR and fewer measurements in a given time. In Sec-
tion 2.2.1, the use of Cell Averaging Constant False Alarm Rate (CA-CFAR)
and special considerations for our use case that had to be taken into account
are explained in more detail.

In addition, some systems allow discrimination between different targets
and background/clutter by calculating the Doppler shift of the received sig-
nal.
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Similar to Lidar sensors, it is possible to use the Doppler shift to determine
the radial velocity of the target. This can be used to determine whether a tar-
get is moving towards or away from the sensor, which in turn can be used
to determine whether the target is part of the static background. However,
calculating the Doppler shift requires a series of measurements, and deter-
mining the radial velocity requires relatively expensive signal processing in
the form of Discrete Fourier Transform (DFT) [21, p. 35].

2.1.4 Camera sensors

Cameras are widely used for computer vision tasks because of their ability
to capture images of the environment, which can be processed to determine
the presence of objects. For instance, in the field of transportation, cameras
are used for traffic management and control, where they can detect vehicles,
measure their speed, and monitor traffic flow [6].

In addition, stereo cameras have been employed to calculate the distance
to objects by comparing the images captured by two cameras, making them
suitable for autonomous vehicles [33]. This technology has already been
implemented in advanced driver-assistance systems (ADAS), where stereo
cameras are used for lane departure warning, adaptive cruise control, and
collision avoidance [5].

Despite the potential benefits of using cameras for various applications,
there are several factors that make it a less attractive option. Firstly, the rel-
atively high cost of cameras make it a less attractive option compared to
the OBS. Additionally, legal restrictions regarding privacy concerns and data
protection can limit the use of cameras in certain situations, such as in public
spaces or areas where individuals have a reasonable expectation of privacy.
Furthermore, the setup required for cameras can be cumbersome, as they
require a fixed position and a clear view of the environment. This basically
restricts the possible positions of the camera to the bike rack.

In conclusion, cameras are a well-established and versatile technology for
computer vision tasks, but their applicability may depend on various fac-
tors such as cost, legal considerations, and setup requirements. Nonetheless,
with ongoing advancements in camera technology and image processing
techniques, cameras are expected to remain a possible solution for the chal-
lenges of determining the quality and availability of biking infrastructure.
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2.2 ALGORITHMS

Due to the advantages and disadvantages mentioned above, we chose radar
technology as the sensor of choice for our prototype. Table 3.1 compares
different radar platforms and Chapter 3 explains in detail why the XM122
IOT module was chosen and how it was used. For this section we’ll only
discuss the information relevant to the A111 60Ghz radar, a PCR, as not all
algorithms are suitable for this type of radar.

2.2.1 Presence Detection

In the field of radar, there are several signal processing algorithms that are
used to detect targets. The choice of algorithm depends on the type of radar,
the targets to be detected and the computing resources available. [28] pro-
vides an overview of different algorithms, their advantages and disadvan-
tages. Since we have chosen a PCR for our application, we will focus on the
algorithms suitable for PCR systems.

One of the simpler algorithms for performing detection tasks is the fixed
threshold algorithm. In this method, a predetermined or boot measured
fixed value is used to check whether a detection has occurred. The advantage
of this algorithm is that it has a fixed running time. Since the radar returns
n reflection samples, each must be compared to the threshold exactly once,
resulting in a running time of O(n). However, the fixed threshold algorithm
has several drawbacks. The threshold must be chosen carefully and may only
work under the initial conditions for which it was chosen. If the threshold
is too high, the algorithm will not detect any targets, and if the threshold is
too low, the algorithm will detect targets that are not there. This is particu-
larly problematic when the radar is used in changing conditions. Changes
in environmental conditions can cause the sensor to make false detections.
In addition, a fixed threshold is tied to the sensor’s settings. Changing the
pulse length, for example, will result in a different amplitude for an other-
wise unchanged situation.

Instead of using a fixed threshold, it is possible to use a Constant False
Alarm Rate (CFAR) algorithm. These algorithms dynamically recalculate the
threshold to achieve a CFAR, hence the name. A very prominent type of CFAR
algorithm is the CA-CFAR [28, p. 337]. This algorithm calculates a new thresh-
old for each cell under test (cut). This is done by summing all the other cells
and using that sum as the threshold. This has the advantage of increasing
the threshold as the noise level increases. This works particularly well when
the noise is homogeneous. However, it has the disadvantage of being much
more computationally expensive than the fixed threshold algorithm. Since
the sum must be recalculated for each cell to be tested, the runtime for a
signal with 7 cells effectively changes to T(n - (n — 1)) € O(n?) for all useful
measurement series. There are more sophisticated variations, but the idea of
determining the threshold remains the same and is only slightly improved
by applying different types of filters. For example, calculating individual
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thresholds for the left and right sides of the cut, ignoring a number of cells
next to the cut called the CFAR guard, or even a combination of several CFAR
algorithms [21, ch. 9].

2.2.2 Distance measurement

Distance measurement is implemented using the calculation described in
Section 2.1. Due to the properties of metal, the flat metallic side of a car
should have a very strong Radar Cross Section (RCS). The strongest peak
should be close to or at the shortest distance from the sensor. This strong
peak should allow a very accurate distance measurement as the RCS should
be relatively narrow. As described in Section 2.1.3, calculating the distance
to one or more targets is relatively straightforward as the returned data
series are in the time domain. Once a detection has been made, the distance
correlates with the propagation time of the signal. The numerical value can
be calculated using d = dy + i - Ad, where d| is the offset to the first cell for a
PCR, mostly determined by the blind spot caused by the pulse length, Ad is
the distance between two sample points, also known as the resolution, and i
is the index of the sample point where the detection occurred.

2.2.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
Discrete Fourier Transform (DFT) of a sequence of data points. The DFT is a
mathematical transformation that decomposes a sequence of data points into
their individual frequency components, which can be used to represent the
data in the frequency domain. In our case, these are the discretely sampled
amplitudes of the reflection [28, ch. 5.3]. The FFT is a faster and more efficient
version of the DFT and is widely used in signal processing applications such
as audio and image processing.

The FFT algorithm works by recursively dividing the input data into smaller
and smaller pieces. ,The FFT algorithm achieves its efficiency by replacing
the computation of one large DFT with that of several smaller DFTs. “ [24,
p-86]

The FFT algorithm has a time complexity of O(nlogn), which makes it
much faster than other methods of computing the DFT, such as brute force,
which has a time complexity of O(n?). This makes the FFT algorithm partic-
ularly useful for analysing large data sets or for applications that require
real-time data processing. For radar, this allows a so-called range-doppler
map to be calculated from multiple radar pulses. Each pulse provides infor-
mation about the distance to the target, and by transforming the individual
sweeps/pulses into the frequency domain, we can calculate the frequency
difference between the reflected and received pulse. This frequency change
is caused by the radial velocity of the target. The radial velocity v can be cal-
culated using v = 0.5- ¢ J}—?, where fp is the frequency difference between
the transmitted and received pulse, f; is the frequency of the transmitted
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pulse, and c is the speed of light [21, ch. 2-6]. This calculation only works as
long as the frequency of each pulse is twice the frequency difference. This
means that in the case of pulsed radar, the pulse length must be long to
cover greater distances and have a better signal-to-noise ratio, but the pulse
length must be short enough to measure the expected radial velocities.

One possible implementation is the recursive depth-first approach pro-
posed in [19, Listing 1.] and commonly known as the Cooley-Turkey FFT
algorithm. The algorithm achieves its efficiency by recursively splitting the
input into smaller and smaller pieces and then combining the results of the
smaller pieces. This is done by calculating the DFT of the even and odd in-
dices of the input data and then combining the results. However, the imple-
mentation presented does not seem suitable for the embedded XM122 due
to the new memory allocation for each recursion. It may be possible to inves-
tigate an implementation that rearranges the calculations to avoid recursion
and memory allocation.

2.2.4 Clustering Algorithms

Since the goal of this project is to identify dangerous areas or roads, a logi-
cal approach would be to use some form of clustering algorithm to identify
these areas. Clustering is a common technique for explorative data analysis.
This would allow us to identify areas where there are a lot of close encoun-
ters. Since we will be working with geographic data, the research will focus
on clustering algorithms that are better suited to handle geographic data. [14,
ch. o7, p.149] gives a very good overview of different clustering algorithms
and their use cases.

2.2.4.1 k-means

k-means is probably one of the most popular clustering algorithms. k-means
divides the given data points into exactly k clusters. This is done by selecting
k random data points as initial cluster centres, and then assigning the data
points to the nearest cluster centre. This makes k-means a distance based
clustering algorithm. The new data may affect the cluster centre, which has
to be recalculated. This is repeated until the clusters no longer change. K-
means is interesting because it is suitable for large datasets, which is what
we expect to end up with in production, as k-means is reasonably scalable
and an efficient algorithm. The big problem with this algorithm is that it
requires the user to specify the number of clusters k. One approach is to use
the elbow method to determine the correct number of clusters, but this also
means that the algorithm has to be run for each k that needs to be tested.
Furthermore, the algorithm is susceptible to outliers because they affect the
mean values of the clusters [14, p.157]. Additionally k-means will always
assign all points to a cluster. This is in contrast to the intended use case of
identifying areas with a higher measurement density than other areas.

13
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2.2.4.2 DBSCAN

Since we do not know the number of clusters to expect, one approach would
be to use density based clustering algorithms. One possible algorithm would
be density-based spatial clustering of applications with noise (DBSCAN).

DBSCAN will determine the number of clusters by creating a cluster for
each point that has at least a certain number of neighbours MinPts within
a certain distance €. These points are called core points. A non-core point
within € of a core point is assigned to the same cluster as the core point
and is considered directly reachable. A point within € of a directly accessi-
ble point is considered to be densely accessible. With this set of rules, the
initially identified clusters will naturally grow and merge until all points are
either assigned or considered outliers [14, p. 171]. The big advantage for our
use case is that we do not need to specify the number of clusters, the algo-
rithm will identify them automatically. Furthermore, the parameters for this
algorithm can be naturally translated into the real world application. For ex-
ample, € can be translated to the real world distance between two points, e.g.
in km. Additionally, MinPts can be chosen to correlate with a certain per-
centage of all overtaking maneuvers that were considered dangerous. This
allows sensible parameters to be selected for the algorithm without knowl-
edge of the total collected data that may be available at the time of algorithm
selection. To reduce the overall runtime it might be possible to run the algo-
rithm twice, once with a high € and MinPts to identify one cluster per city,
allowing a partitioning of the data into smaller subsets. Then cluster each
subset with a much smaller € to perform the final clustering highlighting the
danger zones within each city. We would expect this to reduce the runtime
of the algorithm because the high e would allow a fast assigning of points to
a cluster in the large dataset, and the low € on the smaller dataset would not
impact the runtime as much as operating on the entire dataset because there
are less distances to compare to. This might not even be necessary because
DBSCAN is generally already suited for large scale datasets.

2.2.4.3 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) sepa-
rates it from the previous two algorithm in the aspect that it does reduce the
amount of data to be processed by initially creating a summary. Furthermore
the fact that BIRCH initially summarizes the datasets into subclusters before
reducing the information to retain of this cluster [34]. This makes it suit-
able for large datasets because it summarizes dense areas. A common use
case for BIRCH was the separation and compression of images by identifying
pixel clusters. BIRCH can however be adapted to use the clustering approach
of other algorithms by using the BIRCH summary as input for the clustering
algorithm. Since we already presented the idea of separating the data into
subsets, one per city each, BIRCH might be the ideal algorithm for this goal,
especially because it can process large datasets even with limited memory.
Just as k-means however it is necessary to specify the expected amount of
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clusters beforehand. For the separation of the data into subsets this should
be fine however, as the amount of participating cities can just be seen as
an upper limit to avoid splitting one city into multiple subsets. Having two
cities in the same subset does not matter as the final clustering will still be
able to identify the danger zones within each city.
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2.3 RELATED WORK

A number of projects have been carried out in the field of bicycle accessories
and research. This section gives an overview of the most relevant projects.

2.3.1  Open Bike Sensor

The Open Bike Sensor is a project based on the , Project Radmesser”* launched
in 2018. These projects use a TOF sensor, currently either an HC-SRo4 or
JSN-SRo4T ultrasonic sensor, to measure the distance to cars. However, the
user has to trigger each measurement individually. With the OpenBike sen-
sot, this is done by pressing a button on the bike’s handlebars. Placing the
burden of ensuring high data quality on the user would require a significant
change in the attractiveness of the bike, and the user would need to be aware
of the system. This could distract the user and lead to accidents. In addition,
the OpenBike sensor has to be purchased, assembled and programmed man-
ually, with instructions requiring basic soldering skills and some computer
affinity?. This may be one of the reasons why the OBS isn’t as well known
as it could be. As citizen science depends on the participation of the general
public, this is a significant drawback. As the project has been running since
2020, they have already been able to demonstrate the value of the data in a
project in Berlin. The data was used to compile various statistics and create
maps that provide insights into the situation of cyclists in Berlin.

2.3.2 Garmin Rear Radar

Garmin has a product called , Varia”3. This product uses radar to detect
approaching cars and warn the cyclist. While this device can automatically
detect cars, it is not able to measure the lateral distance to passing cars.
While it can tell the speed and distance of an approaching car, it does not
really give an indication of the cyclist’s safety, as a fast car could pass the
cyclist at more than the required safety distance. In addition, the price of
these devices is €200 or more, which is a significant barrier to entry.

2.3.3 Street condition classification

In related work, a pulsed coherent radar has been used to perform material
and state detection to identify road conditions. This was done by modelling
different material properties with the reflection and scattering behaviour as
well as the dielectric properties of the materials. In this way they were able
to use the amplitude to distinguish between wet, snowy and dry asphalt [18,
p-40]. At the same time they claim in their conclusion that the A111 radar is
limited in it’s range in a fast moving environment.

1 https://interaktiv.tagesspiegel.de/radmesser/kapitel7.html
2 https://www.openbikesensor.org/docs/hardware/v00.03.12/build-instructions/
3 https://www.garmin.com/de-DE/p/601468


https://interaktiv.tagesspiegel.de/radmesser/kapitel7.html
https://www.openbikesensor.org/docs/hardware/v00.03.12/build-instructions/
https://www.garmin.com/de-DE/p/601468

2.3 RELATED WORK

2.3.4 Stationary radar for bicycle safety

Another project is a stationary professional 24GHz FMCW radar that can be
used to map the situation at hand. While this is a very nice technique to
digitise and analyse already known problem spots, the device is too big to
be used on a bicycle. [13]
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THE ARTIFACT

This chapter describes the artifact we created, its components, and why those
components were chosen. It also describes the implementation of the artifact
and the challenges encountered during the three implementation iterations.
The first implementation was based on the distance detector provided by
the SDK, the second implementation was based on the envelope service pro-
vided by the SDK, and the third implementation was based on the power bin
service. Each implementation has been improved based on the evaluation of
the previous one. All implementations can be flashed and tested following
the instructions in [3, 2.1 and 2.2].

Figure 6.2 shows an abstraction of the setup, starting with the radar, trans-
mitting the measurements via BLE to the Android app, adding the location
information and storing the data. At the end of the tour, the data is up-
loaded to the backend where it is pre-processed and stored in a dynamodb.
A node.js web application is used to visualise the data, and additional lamb-
das are used to simplify database access. This chapter focuses on the imple-
mentation of the radar signal processing.

3.1 HARDWARE SELECTION

Based on the advantages and disadvantages presented in Section 2.1, we
came to the conclusion that pulsed coherent radar is a promising technol-
ogy without violating people’s privacy. Despite the drawbacks presented in
the paper referenced in Section 2.3.3, we decided to go with this type of
technology. Research has shown that sophisticated signal processing should
be able to compensate for the poorer SNR when working in a long range,
rapidly changing environment. Due to the optimal dielectric properties of
the intended target and the near optimal 9o° orientation, we still expect the
radar to perform reasonably well. Assuming that most cars are made of
metal, combined with a large and relatively uniform surface, it is expected
that there will be a significant difference in reflection strength compared to
hedges, pedestrians, wooden walls and more.

There are several possible radar chips available for purchase. Table 3.1
summarises the information available in a tabular format. We have chosen to
use the XM122 iot 60Ghz PCR radar chip developed by acconeer [25]. Mainly
because this chip has a very competitive price of only < 35€ each, contains an
nrf52840 cpu and a Bluetooth antenna in a very space efficient circular layout.
A front and rear view of the sensor is shown in Figure 6.4. This package
offers almost everything you need at a price close to or even below that of
the OBS. 60Ghz corresponds to a wavelength of ~ 5mm, which allows for
very energy efficient radar pulses at short ranges, as discussed in Chapter 2.
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Table 3.1: Manufacturer specifications of possible 60GHz radar platforms, as far as
they are available.

XMi22 DEMO BGT60LTR11AIP XE121 AWR6843A0PEVM
Frequency 60GHz 60GHz 60GHz 60GHz
Radar Type  PCR FMCW PCR FMCW
Range up to 7m up to 14m up to 20m  12-15m for people detection
Resolution  o.5mm limited by measurable frequency difference ? ?
Bluetooth Yes No No No
CPU nrf52840 external (usb) ? ?
Clock Speed 64MHz ? 600Mhz
RAM 256kB SRAM ? 768KB
Flash 1MB - ? 1.4MB
Price = 35€ =~ 324% =~ 191€ =~ 135%
Size 33mm circular 64 mm x 25.4 mm size ? ?

While a FMCW radar might be more accurate and faster with a better SNR, it
comes at a much higher price. A possible chip of similar size to the XM122
costs ~ 130€ [2].

Both sensors have the advantage that they can be used without restrictions
as long as the equivalent isotropically radiated power (EIRP) is below 0.1W
on average, as regulated by the FCC in 2021 [10].

For these reasons we have chosen the XM122 for our prototype, but other
radar chips may be equally or more suitable. Once the platform was selected,
the first step was to evaluate its basic functionality and characteristics. An
important aspect outlined in Chapter 2 was the fact that the amplitude of
the reflections would be used to differentiate between cars and other objects.
To see how well this worked and at what distance, we connected the sensor
to a PC to stream the data, starting with the default settings for each mode
supported by the sensor.

At the time of writing, the SDK for the A111 has been split into 4 different
types of analysis (services).

* Power Bins Service - This service provides a histogram of the power of
the received signal correlated with the distance to the target.

* The Envelope Service - This is a finer grained version of the Power
Bins Service. A sequence of radar pulses is transmitted, sampling the
received reflections every 0.5mm, averaging and time smoothing the
result to produce a stable signal.

* IQ Service - This service is not used in this project as it is used to detect
small movements.

¢ Sparse Service - The raw signal is sampled every ~ 6cm. This mode
produces a series of arrays, each representing a sweep. The arrays con-
tain the raw data from the radar chip and can be used to implement
custom algorithms such as FFT to extract the Doppler shift. Due to the
large number of sweeps, this introduces a significant error in distance
measurements.

These services differ in computational complexity, pulse length, sampling
rate and other performance metrics. In particular, pulse length is an impor-
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tant factor in radar performance. The longer the pulse, the more energy is
consumed and the lower the resolution of the range measurement. How-
ever, the additional energy allows a longer sweep length by improving the
SNR, but also increases the blind spot near the sensor due to possible direct
leakage. Using the Power Bin service, we positioned the sensor in front of
various targets and recorded the amplitude of the reflections. As expected,
the amplitudes vary with material and distance. In general, we observed
in the raw data that a human at 1m produces a reflection that is as strong
as a car at 2.5m. A car at the same distance as a person produces a reflec-
tion about 3-4 times as strong. While a brick or wooden wall will produce a
stronger reflection than a human, it is still only half as strong as a metal ob-
ject. Furthermore, at a distance of around 1.5m, reflections from non-metallic
objects become so weak that they cannot be reliably distinguished from back-
ground noise. Figure 3.6 illustrates this observation by plotting the average
amplitude measured per distance and target.

3.2 FIRST IMPLEMENTATION

For the chosen hardware, the first implementation was based on the distance
detector provided by the SDK. This abstraction is implemented on top of the
envelope service. The code can be referenced in Listing 6.2. With the SDK
implementation, the code is quite simple. As long as a target is detected,
send the measured distance. If no target is detected, send a distance of 0.

This is the highest level of abstraction provided by the SDK and the easiest
to use. To use it, you need to set a threshold and choose how to sort the de-
tected objects. Valid sorting strategies are sorting by occurrence, reflectivity
or relative reflectivity as a function of distance. The maximum number of
detections returned must also be set. Finally, the radar-specific settings such
as start point, sweep length, gain and other settings must be set according
to the requirements defined in Chapter 1.

However, the resulting radar performance was suboptimal for our use
case. Although the distance measurements appeared to be very good, it did
not take much evaluation to conclude that the distance detector was not
suitable for our use case. This was mainly due to the low frame rate of less
than 6Hz. This is mainly due to the fact that the Distance Detector uses the
Envelope Service, which combines a series of successive frames to produce
a stable and accurate signal optimised for distance measurements. To ensure
reliable detection of fast moving objects, the sampling rate must be high
enough. According to the sampling theorem, the sampling rate must be at
least twice the highest frequency component of the signal. Assuming that
cyclists pedal at 258" ~ 7™ and cars overtake them in a city at a speed of
less than 50 s 14 it can be assumed that the speed difference is usually
less than 7°¢. Considering the measurement angle of the selected sensor and
assuming a symmetrical setup, the possible measurement duration ¢ can be
described using h as the height of the spanning triangle shown in Figure 3.1,
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Av as the velocity difference and « as the measurement angle, as shown in
Figure 3.1, the following relationships can be derived:

s=2-h- tan(%) (3.1)
s

t= Ao (3-2)
h

d= 2os(D) (3-3)

These functions are relevant to the detection algorithm because they de-
scribe the assumptions made previously. For example, the effect of a car
approaching and then moving away can now be compared to the expected
values calculated with Equation 3.2. Let’s say a minimum distance of 1m was
measured, then we can calculate the expected maximum distance when en-
tering the Field of View (FOV). d = m ~ 1.3m. It is also very useful to be
able to calculate the expected duration of a car in the FOV using Equation 3.2.
Assuming a minimum distance of 0.5m and a maximum Av of 7%, we can cal-

culate an expected lower bound for the duration f (g5 = %ﬁm(m) ~ 0.12s.

This information is relevant because it means that our implementation must
achieve a measurement rate of at least 16Hz if we are to be able to reliably
measure a passing vehicle.

Sensor

< []

Figure 3.1: Sketch of the measurement angle of the sensor and it’s correlation to the
measurement duration.

Another minor aspect is that the implementation does not allow a dis-
tance dependent threshold. This means that the threshold is the same for
all distances. This is not optimal because non-metallic targets can produce
a reflection at close range that is similar in strength to a metallic object at
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distance. Therefore, the distance detector would detect non-metallic objects
at close range. This also leads to random background noise spikes exceed-
ing the threshold and triggering a false positive measurement. This problem
could be solved by requiring a minimum number of measurements to be con-
sidered a valid measurement. However, this would require a much higher
measurement rate and would not solve the problem of non-metallic objects.
In addition, increasing the measurement rate will require a significant sacri-
fice in either sweep length or pulse length. Both changes would result in a
reduction in range. The reduced pulse length would also worsen the SNR.
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3.3 SECOND IMPLEMENTATION

Based on the observations made in the previous section, we decided to im-
plement the distance detector in a different way, hoping to achieve a higher
frame rate. This implementation was also based on the envelope service.
This allowed much finer grained access to the radar settings. In addition to
sweep range and pulse mode, running the envelope service directly allowed
settings such as Hardware Accalerated Average Samples (HWAAS) and other
settings to be adjusted. Reducing the HWAAS to 1 resulted in a less stable but
much more sensitive measurement, as objects that were only briefly in the
FOV were no longer averaged. Furthermore, instead of using a fixed thresh-
old, we have now implemented a CA-CFAR variant that takes the current
distance into account. This implementation can be referenced in Listing 6.3.
This implementation barely achieves the required update rate. Still a mas-
sive improvement over the previous implementation. We did not manage
to get above 12Hz, mainly due to the fact that the required sweep length
is sampled every 0.5mm in the envelope service. This means that a sweep
length of 2700mm results in 5400 individually sampled points. As a result,
the distance measurement is expected to be very accurate. In addition, the
doubled frame rate can be set to 2 and is still no slower than the previous
implementation.

3.3.1 Distance evaluation

To evaluate the accuracy, precision and range of this implementation, we
performed the first experiment defined in Chapter 1.

Figure 3.2 shows the individual measurements and their amplitude, again
confirming the initial observations that the amplitude is significantly differ-
ent for metal objects and therefore suitable for differentiation using distance
and amplitude dependent thresholds. The lower amplitude near the trailer
was caused by the setup error. The bicycle was not standing upright, so the
sensor had a significant part of the FOV occupied by the tyres, resulting in
a lower overall amplitude. The graphs in Figure 3.3 show the absolute and
relative measurement errors. After examining the data, we have concluded
that this error is caused by our experimental setup. Therefore, we can’t infer
the real accuracy of the envelope implementation. But even if the setup was
perfect, the largest error was 10cm, which would still be acceptable.

Another indicator supporting this explanation, is that an analysis of the
data showed, that the spread between the minimum and maximum distance
measurement, in a single measurement series, was 6cm. The aggregated re-
sults can be seen in the Table 6.1. Even when using the worst case in our
measured data as the measurement error, the implementation was able to
measure the distance of metal objects up to 3m with the required accuracy.
The measurement series for non target objects, e.g. the wall shows a sig-
nificant measurement error because the reflection produced was not strong
enough above 1.5m to be reliably detected, resulting in random locations be-
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ing identified as the highest amplitude, explaining the measurements at ran-
dom distances with an amplitude at threshold. This is expected behavior as
the assumption that non metal objects, e.g. a wall, will produce significantly
weaker reflections allowing to filter them out in the final implementation.

Measured Amplitude at each distance
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Figure 3.2: shows a scatterplot of all measured amplitudes from the Envelope ser-
vice. Interestingly, the radiator amplitude at 1.5 has a lower amplitude
compared to the following distances, which is unexplained. As we did
not have a fixed measurement threshold, objects with too weak a reflec-
tion at a given distance will produce random distance measurements
due to background noise.

3.3.2 Vehicle detection evaluation

The next step was to evaluate the reliability of the sensor during target de-
tection. Some of the singular measurement data obtained can be referenced
in Figure 3.4. For readability reasons, only an extract can be shown, but no
additional information can be derived from the rest of the data, as the gen-
eral pattern is the same. In this figure you can see the dashed lines where a
car passed the sensor and was noted by a human. The blue dots represent
distance measurements taken by the radar sensor. While the detection of
cars was very reliable, with very no false positives and almost no false nega-
tives during the test, one very important flaw was discovered. A car passing
next to the sensor will not produce a single measurement, but will result in
multiple measurements. The implementation on the sensor should therefore
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Figure 3.3: shows the measurement error, absolute (a) and relative (b), per set up

experiment with the 95% confidence interval. The measurement error is
most likely caused by the experimental setup and not by the measure-
ments themselves, however even the recorded error would still be within

acceptable limits.

be improved in the next iteration to produce a single measurement for each
passing car. This could be achieved by further increasing the frame rate and

adding some sort of timeout before a detection is considered complete. How-

ever this timeout should be selected carefully to avoid closely passing cars
into one. Overall, the results seem very promising and the implementation
is already very reliable, considering that no false positives occurred during

testing in a stationary setup.
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Figure 3.4: This graph shows a short section of the timeline of cars passing the

sensor and the measurements taken using the envelope service. Only a

snippet is shown to keep the graph readable. The rest of the data gives

no additional information.
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3.4 THIRD IMPLEMENTATION

For the third iteration, we started with a different mode of operation. Instead
of the envelope service, this implementation was based on the power bin
service. The main difference between the envelope service and the power
bin service is that the power bin service samples the reflection every 0.5mm,
but groups them so that the resulting data is composed of bins with a width
set by the user. This allows a higher frame rate because less data has to be
moved between the radar and the microcontroller. The disadvantage is that
the resolution is lower and the data is not as accurate. Using a bin width
of 2cm, and thus reducing the sample points to 135, the frame rate was
increased to up to 40HZ, but to ensure a stable frame rate we locked it at
30Hz to have spare time for additional tasks such as sending the data when
necessary, and to reduce power consumption.

The CA-CFAR implementation of the second iteration was reused and fur-
ther improved by adding in-frame signal smoothing. This means that instead
of testing each cell individually, the algorithm uses a pre-defined number of
neighbouring cells to determine the actual expected value of the current cell.
Currently, all adjacent cells are used equally, but a further iteration could
instead weight the cells based on their distance from the cut. The reason for
this change is that we have found that random fluctuations in the ampli-
tude, caused by interfering background noise, can sometimes cancel out the
reflection. This random noise artefact can mess up individual cells, but is
very unlikely to affect several adjacent cells at the same time. This should
additionally reduce the measurement jitter seen in the second iteration as it
moves the measured peak closer to the centre of the overall peak. It also fur-
ther reduces the likelihood of false positives by averaging out random cells
above the threshold.

Based on the amplitude observations from the previous iteration, we mod-
ified the CA-CFAR algorithm to take into account the distance of the target
when comparing to the threshold. Furthermore, the new algorithm mea-
sured the distance not only to the strongest reflection, but also to the first
reflection above the threshold. This was done to avoid detection of close
non-metallic targets. The required threshold is now additionally influenced
by the distance to the sensor. A closer object requires a multiple of the thresh-
old, while a further object only requires to be slightly above the threshold to
be considered a detection. This is due to the fact that wooden objects or hu-
mans produce a reflection below the noise when they are beyond a distance
of ~ 1.5m with the selected sensor configuration.

Another important change was the addition of a timeout of ~ 75ms be-
fore a detection is considered over. This correlates to 3 consecutive measure-
ments without detection in our current duty cycle. This was done to solve
the problem of a single car being separated in multiple detections discov-
ered in the second iteration. In addition to the minimum required amount
of measurements this resulted in very promising results in regards to the
vehicle detection. In order for a metal car to not be detected, it has to pass



3.4 THIRD IMPLEMENTATION

the sensor in less than 100ms. In reference to Figure 3.1 this means that the
car needs to pass the cyclist with a v > 50%’”. This would be a possible,
but very very unlikely scenario, simply due to the danger of such a high
speed at such a high distance. If the car passes at 2m the required év would
be ~ 95km/h. It is therefore save to assume that for all practical purposes
the minimum amount of required measurements won’t cause any false neg-
atives, but basically reduces the amount of false positives to a minimum by
avoiding the detection of small metal objects such as Lamp posts, since they
produce usually only a single reflection above the threshold. This is mostly
due to their RCS reflecting to the sensor only when at the center of the pulse.

3.4.1 Distance evaluation

The distance evaluation was carried out in much the same way as in the
second iteration. The two main differences were that in this setup we made
sure that the bike was standing upright, as if it were in motion, and not
on the kickstand. The second difference was that instead of measuring the
distance from a single point, we now set up the bike so that the front and
back of the bike were the same distance from the target, resulting in a much
more parallel and repeatable setup, reducing the error caused by it. The re-
sults are again largely as expected and are shown in Figure 3.6. As we can
see from the changes in the required amplitude compared to the threshold,
in Figure 3.5 the measurements at random distances when using a wall as a
target above 1.5m no longer occur. Looking at the measurement errors in Fig-
ure 3.8 and Figure 3.7 we can see that the human error has been significantly
reduced with the new setup. The new sampling with the new implementa-
tion shows an expected measurement resolution of 2cm. As we do not really
see this in the results, we can conclude that the setup is still not precise
enough to measure the absolute error of the sensor. However, we can see
that the error is still well below the initially defined acceptable level of 10cm.
Table 6.2 shows a maximum spread of 4cm at 2.5m. This seems reasonable,
especially considering the expected resolution, which would mean that if the
target is at the n,, measurement point, then by pure chance noise has caused
the adjacent measurements to be the strongest reflection. Considering the
fact that we have multiplied the measurement rate, this error is still accept-
able, especially considering that this is the worst case of the measurements
obtained.

3.4.2 Vehicle detection evaluation

For this experiment, no changes to the setup were made and it was repeated
exactly as described above.

The data plot shown in Figure 3.10 shows that the changes to the im-
plementation had the desired effect. The reference moments are shown in
Figure 6.8 and Figure 6.9. A single car produces only one measurement as it
passes the sensor, while the duration of 75ms is short enough to separate the
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Figure 3.5: shows a scatterplot of all the amplitudes measured by the Power Bin
service.

cars properly. Furthermore there was no false positive measurement, and no
car was missed by the sensor. The selected section also shows the remain-
ing problem. The only car without distance measurement, was in fact not
missed by the radar, but the measurement got lost while transmitting to the
phone. This needs to be addressed in the future. Secondly, cars in the oppo-
site direction are still being detected, but this is to be expected and is less
an implementation problem than a definition problem. To address this, ex-
pert knowledge from people experienced in road design is needed. These
experts should advise on how to deal with this data, as it is technically a
false positive, but if a car is heading towards a cyclist and passes the cyclist
at close range, this would still be a dangerous situation and could therefore
be valuable information. One example illustrating this can be referenced in
Figure 6.10.

As we have been running in favourable conditions, we need to consider
what would happen if the conditions were not so favourable. For example, as-
suming rain as an evenly distributed noise, we can conclude that this would
simply result in a higher calculated threshold. Therefore we can safely as-
sume that conditions such as rain, snow, high humidity or other weather
conditions would have little or no effect on the results. The only way the
weather would affect the readings would be through the sensitivity of the
sensor, which would not result in false readings, only missed cars. This
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Amplitude vs Distance
The amplitude is expected to decrease with distance.
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Figure 3.6: shows the average amplitude as a function of distance. The dashed line
shows the background noise.

should be fine, as it will only minimally affect the analysis and the data
will still be usable.
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Figure 3.7: Measurement error in (a) absolute and (b) relative values for the power
bin implementation. The resolution is now 2cm, but the error is still in
the range of 6cm.
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Figure 3.8: shows the histogram of all measurement errors of the power bin imple-
mentation. Since the power bin implementation has a resolution of 2cm,
the error would be limited to these increments if the setup were perfect.
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Variance per distance
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Figure 3.9: shows a histogram of the variance of the measurements. As expected
most measurements show very little variance. The maximum recorded
variance would still allow a relatively accurate measurement, but also
show that individual measurements might not be accurate enough, to

for example, draw conclusion about the minimum distance during an
encounter.
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Figure 3.10: shows an interesting section of the data obtained. The dots are mea-

sured distances and the dashed lines are cars passing the cyclist, ob-

tained from the reference video. This section is particularly interesting

because it shows that the changes made in the third iteration allow a

single car to produce only one measurement, but at the same time it

highlights that cars in the opposite direction are detected when they

come closer than 3m. This graph also shows a case where a packet loss
caused a missed measurement. This can be seen in the appendix.



ANALYSIS

In this chapter we will present different analysis techniques to evaluate the
collected data. We start with a sample measurement to show how the data
can be interpreted. This is followed by a simple tabular analysis and then
more complex techniques such as aggregation and clustering methods. To
obtain the data, the code produced during the third development iteration
was used.

To do this, we chose a test route that starts from a common point, a su-
permarket, and makes a round trip along a main road. This road provides
some infrastructure in the form of an ,additional sign 1022-10” allowing cy-
clists to use the pavement. This infrastructure is not continuous, allowing
a direct comparison between different conditions. The route also includes a
section through a park where trees will be less than 2m to the left of the cy-
clist, providing an opportunity to test the detection algorithm when passing
unwanted objects within the FOV and range of the sensor.

We also want to quickly review the general rules of the road for cyclists
over the age of ten. In general, a cyclist must use the road. They must ride
on the right-hand side of the road. In doing so, they should keep a sufficient
distance from the kerb and parked cars [LG Berlin, Az. 24 O 466/95]. This
is usually interpreted as the width of a door to a parked car. However, it is
also required that if there is a cycle lane with the sign ,traffic sign 237 cycle
lane” you must use it. However, , traffic sign 1022-10 bicycle lane free” does
not require cyclists to leave the road, and if they decide to do so, they must
cycle at walking speed as defined by the StVO. With this in mind, we can
conclude that cyclists are allowed to use the road along the entire length of
the experimental route. In some sections, the use of the footpath is allowed
if desired.

4.1 EXAMPLE MEASUREMENT

Before starting the general analysis of all the data collected, it is important
to gain an understanding of the data collected. To do this, we will present
a single measurement and explain how the different values can be used to
interpret the situation and draw conclusions about the reliability of the mea-
surement. Figure 4.1 shows the picture that belongs to the data in Table 4.1.
Going through the rows in the table, we can see that each row with o or
1 measurements was a timeout transmission, and can be attributed to the
lack of a sufficiently strong reflector. Furthermore, the second row can be
correlated to the red car that passed at a considerable distance. As expected,
the distance to the strongest and the first reflector are very close. Further-
more, the variance of both measurements is small enough to conclude that
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the measurement is reliable and that the car moved in a relatively straight
line. The second detection can be seen in the fourth row. This detection be-
longs to the image shown in Figure 4.1. As we can see, both the distance to
the strongest reflector and the distance to the first reflector are well below
the required safety distance. Interestingly, the measurements aren’t as close
together as they are for the car. However, looking at the picture of the vehi-
cle, a valid explanation would be that something further inside the vehicle
is a stronger reflector than the outer frame of the truck. This is particularly
interesting as it would mean that the strongest reflector would always pro-
duce measurements of a defensive nature, while the first reflector would
produce a measurement that could be considered pessimistic. If we consider
the sample variance of both measurement variants, we can estimate the con-
fidence interval, assuming the measurement error is normally distributed,
with d + V02, giving a 95% interval of [1.12m, 1.32m] for the strongest reflec-
tor measurements and [0.83m,1.28m]| for the first detection measurements.
With this in mind, we will use the measurement at the first reflector in the
following analysis, unless otherwise stated. Furthermore, from this measure-
ment it can be concluded without doubt that this was indeed a dangerous
situation. Both measurements show a similar variance, because the variance
is not caused by inaccurate measurements, but because the distance initially
decreases, reaches a minimum, remains at this level until the next cyclist
passes, and then increases again when the rear of the car passes the sensor.
If the actual minimum distance to the car is desired, it would be a viable op-
tion to use the average of the first quartile as a minimum estimation. Using a
quartile instead of a fixed number of measurements has the advantage that
we do not need to know how many measurements make up the ,close “ part
of the situation. We did not do this, simply because that for the intended use
case it is more interesting to see how the overall situation unfolded. The
reason for this can be illustrated by comparing two different situations. Sit-
uation A is where a car passes a cyclist in a straight line at an exemplary
minimum distance of 1.2m. Situation B is where a car initially overtakes the
cyclist at more than the required safety distance, without a clear view, and
suddenly has to reduce the safety distance to 1.3m to avoid oncoming traffic.
While situation A produced an overall lower measurement with a small con-
fidence interval, situation B is arguably the more dangerous situation, with
a naturally larger variance in its measurements. In addition, situation A may
give a bad impression, while situation B may actually be scarier. This leads
to another aspect that the measurements can’t accurately capture. Since the
aim is to make cycling more attractive, the perception of safety is also impor-
tant. And a large and noisy vehicle passing at a certain distance may give a
very different impression to a smaller vehicle passing at the same distance.
The first approach to analysing the collected data was simply to generate
a table. Table 6.3 shows the first ten data points, ordered by the average
distance of the location in ascending order. This allows you to identify the
locations with the lowest average distance, and therefore the most dangerous
locations. Additionally, filter