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A B S T R A C T

In this thesis we use the design science research method to develop an IOT

device capable of documenting road safety and the attractiveness of cycling.

This is done by automatically mapping the availability and quality of cy-

cling infrastructure using modern 60GHz radar technology. These low-cost,

high-performance radars are capable of measuring the distance and speed of

passing cars up to 40 times per second. We are undertaking three successive

development iterations, improving on the results of the previous evaluation.

A key objective is to enable the prototype to operate without user interven-

tion while the cyclist is riding. This requires sophisticated signal processing

to detect cars and measure accurate distances at short duty cycles. In ad-

dition, the collected data should be transmitted via Bluetooth to the user’s

mobile phone for temporary storage. After each trip, the collected positions,

speeds and distances are sent to a scalable infrastructure that enables collab-

orative data collection for in-depth analysis. This data can be used to identify

safer routes and highlight necessary improvements to cycle routes, support-

ing urban development by prioritising roads with the best cost-benefit ratio.

To do this, we used a clustering algorithm to find roads and locations with a

significantly higher incidence of close encounters. All of this was validated

through a series of experimental setups, culminating in a two-month deploy-

ment of the functional prototype in real-world traffic conditions. In the end,

the data highlighted three distinct locations. Despite a lack of urban plan-

ning expertise, at least the reason why these locations were identified seems

obvious, suggesting that the data and the sensor are promising. Concluding

the thesis with a discussion of the limitations of the prototype and the future

work that is required to make it a viable product, and to increase the user

incentives to actually use it.





Z U S A M M E N FA S S U N G

In dieser Arbeit nutzen wir die Forschungsmethode der Design Science, um

ein IOT-Gerät zu entwickeln, das die Verkehrssicherheit und die Attrakti-

vität des Radfahrens dokumentieren kann. Dies geschieht durch die auto-

matische Kartierung der Verfügbarkeit und Qualität der Radverkehrsinfra-

struktur mithilfe moderner 60-GHz-Radartechnologie. Diese kostengünsti-

gen und leistungsstarken Radargeräte sind in der Lage, den Abstand und

die Geschwindigkeit von vorbeifahrenden Autos bis zu 40 Mal pro Sekun-

de zu messen. Wir führen drei aufeinanderfolgende Entwicklungsschritte

durch, um die Ergebnisse der vorangegangenen Bewertung zu verbessern.

Ein Hauptziel ist es, den Prototyp so zu gestalten, dass er ohne Benutzerein-

griff funktioniert, während der Radfahrer fährt. Dies erfordert eine ausgeklü-

gelte Signalverarbeitung, um Autos zu erkennen und genaue Entfernungen

bei kurzen Tastverhältnissen zu messen. Außerdem sollen die gesammelten

Daten über Bluetooth auf das Mobiltelefon des Benutzers übertragen und

dort zwischengespeichert werden. Nach jeder Fahrt werden die gesammel-

ten Positionen, Geschwindigkeiten und Entfernungen an eine skalierbare

Infrastruktur gesendet, die eine kollaborative Datenerfassung zur eingehen-

den Analyse ermöglicht. Diese Daten können genutzt werden, um sichere-

re Routen zu identifizieren und notwendige Verbesserungen an Radwegen

aufzuzeigen, um die Stadtentwicklung zu unterstützen, indem Straßen mit

dem besten Kosten-Nutzen-Verhältnis priorisiert werden. Zu diesem Zweck

haben wir einen Clustering-Algorithmus verwendet, um Straßen und Orte

mit einer signifikant höheren Häufigkeit von engen Begegnungen zu finden.

All dies wurde durch eine Reihe von Versuchsanordnungen validiert, die in

einem zweimonatigen Einsatz des funktionalen Prototyps unter realen Ver-

kehrsbedingungen gipfelten. Am Ende ergaben die Daten drei verschiedene

Standorte. Auch wenn es an städtebaulichem Fachwissen mangelt, scheint

zumindest der Grund, warum diese Orte identifiziert wurden, offensichtlich

zu sein, was darauf hindeutet, dass die Daten und der Sensor vielverspre-

chend sind. Die Arbeit schließt mit einer Diskussion der Grenzen des Pro-

totyps und der zukünftigen Arbeit, die erforderlich ist, um ihn zu einem

brauchbaren Produkt zu machen und die Anreize für die Benutzer zu erhö-

hen, ihn tatsächlich zu benutzen.
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T H E S I S





1
I N T R O D U C T I O N

The bicycle shows great potential to help building environmentally friendly

and healthy cities [23]. One prominent factor that affects the usage of bicycles

is the provided bicycle infrastructure. Compared to other European coun-

tries the german bicycle infrastructure is already in relatively good shape,

however countries dedicated to providing a high quality bicycle infrastruc-

ture, such as the Netherlands, show a much higher daily bicycle usage. In

Figure 1.1(a) about 70% of the people questioned in the netherlands claimed

to use the bicycle at least a few times a week. In Germany close to 50%

stated to cycle a few times a week. However a more recent survey from 2020

shown in Figure 1.1(b) concluded that only 36% of the german people claim

to use the bicycle twice or more per week for transportation. This difference

could be due to the slightly different question, or indicate a reduced bicy-

cle usage. In both surveys the Netherlands is the country with the highest

percentage of people cycling regularly. This could indicate that the bicycle

infrastructure in the Netherlands is of higher quality and the people are

more willing to use it. This is supported by the results of other researchers

that concluded „The most important approach to making cycling safe and

convenient in Dutch, Danish and German cities is the provision of separate

cycling facilities along heavily travelled roads and at intersections, combined

with extensive traffic calming of residential neighbourhoods“ [26, p.523] Ad-

ditionally, Destatis published in 2021 that in 71,9% of bicycle accidents in

Germany, a car was the opponent of the bicyclist [1]. At the same time the

bicyclist was responsible in only 25% of those accidents with a car involved.

This could indicate that either the availability or visibility of bicycle infras-

tructure is not sufficient resulting in the bicyclists being overlooked while

having to share a lane with cars. Besides the possible induced demand [20],

resulting in increased usage of bicycles, there are more desirable side effects

of improving the biking infrastructure in cities [22].

Projects such as the SimRaApp 1 and the OpenBikeSensor (OBS) 2 have al-

ready shown their potential in 2022 by winning the german bicycle price in

the category service and communication [9]. Those projects mapped the bicy-

cle infrastructure by measuring the distance of cars overtaking the bicyclist.

Other projects tried to use public data sources to calculate the „bikeability

of urban infrastructure“ [15]. One of the most important factors determined

was the availability of „biking facilities along main streets“. This approach

offers the option to dedicate the available funds into projects having the

biggest impact. By identifying the areas where people already bike regu-

1 https://play.google.com/store/apps/details?id=de.tuberlin.mcc.simra.app

2 https://www.openbikesensor.org/

https://play.google.com/store/apps/details?id=de.tuberlin.mcc.simra.app
https://www.openbikesensor.org/
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larly but lack critical infrastructure the impact of the available funds can be

maximized.
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Figure 1.1: Survey results from 2013 (a) [11] and 2020 (b) [17]. The Netherlands lead
in every survey in regards to regular bike usage. This correlates with the
high quality of the bicycle infrastructure in the Netherlands.

1.1 objectives and method

The objective of this thesis is to develop a prototype using the Design Science

Research (DSR) method [32]. The development process will be iterative, with

each cycle evaluated to guide the next iteration and add new knowledge

to the corpus. Figure 3.2 in [16, P.27] illustrates a typical DSR iteration from

problem identification to conclusion and knowledge extraction.

To ensure the success of the project, it is important to identify relevant

metrics before beginning the implementation phase, as emphasized by [32, p.

18]. Furthermore, research questions and experiments that guide the project

must be defined, and can be either quantitative (e.g. „What is the range of

our sensor?“), exploratory (e.g. „Where are dangerous areas?“), or hypothesis-

based (e.g. „During the commute hours, cycling is more dangerous“).

Given the time constraints of a 6-month timeline, the development sched-

ule includes the following segments:

1. Initial research and hardware selection

2. First development iteration
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3. Second development iteration

4. Third development iteration

5. Data collection while setting up the backend

6. Data analysis and remaining tasks

The structure of this thesis follows this schedule accordingly.

1.2 metrics

In DSR, it is crucial to define a set of metrics and experiments to evaluate the

working prototype developed in each iteration. This ensures that the devel-

opment is on the right track, potential issues are identified, and knowledge

is extracted from the evaluation. In this section, we define the metrics for

evaluating the working prototype of the sensor developed in this study.

1.2.1 Distance and Range

The first metric we consider is the accuracy and range of the distance mea-

surements. The sensor should be able to measure distances up to 3m, which

is the typical street width in Germany where the experiments will be per-

formed. Depending on the speed limit, the street width may be regulated to

be between 2.5m and 3.5m. The error in accuracy should be below 5%.

To evaluate this metric, we will use a static experimental setup. The sensor

should be placed in front of relevant targets to obtain a reference distance

measurement. Then, a series of measurements should be obtained at each

distance, starting from 0.5m and ending with 3m, incrementing in 0.5m steps.

The error should be calculated by comparing the reference measurement

with the obtained measurements.

1.2.2 Vehicle Detection

Since one of the main goals is to automatically detect passing vehicles, in-

stead of having the user manually trigger the measurement, the sensor should

be able to detect vehicles automatically. The sensor should be able to detect

vehicles with a speed of at least 50km/h, the common speed limit in cities.

The detection should be reliable, i.e. the sensor should not falsely detect a ve-

hicle when there is none. A false negative is acceptable, i.e. the sensor should

not detect a vehicle when there is one, but it would be desirable to minimize

this error. In order to evaluate this metric an experimental setup should be

used, where the sensor is mounted on a bicycle and cars are driven past the

sensor, while the timestamps of the measurements are recorded. The detec-

tion should be evaluated by comparing the timestamps of the measurements

with the timestamps of the cars passing the sensor.
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1.2.3 Real-world Environment

Since the sensor is intended to be used in traffic, we need to evaluate its use

in the real world. To achieve this, the sensor should be mounted on a bicy-

cle, and a predefined route should be test-driven multiple times, featuring

different cycling infrastructure. A camera should record the trip to obtain a

reference for passing cars and evaluate unexpected measurements and iden-

tify possible flaws. This experiment evaluates the reliability of the sensor in a

real-world environment and additionally allows to show possible advanced

analysis methods of the collected data, currently not done by the OBS project.



2
R E S E A R C H

This chapter provides an overview of the different types of sensor technolo-

gies available and their principles, including their advantages and draw-

backs. Depending on the selected sensor, this chapter will also present the

relevant types of signal processing algorithms that may be required to achieve

the goal of this project. For a brief overview of the different types of sensor,

see [30, Figure 20], which offers spider diagrams for light imaging, detection

and ranging (Lidar), Radar, Ultrasonic sensors, and cameras.

2.1 tof-sensors

A common method for digitally measuring distance is through time of flight

(TOF) technology, which involves measuring the time it takes for a signal to

travel from the sensor to an object and back. This is usually done by emitting

a signal that is reflected by the object and received by the sensor. The time

it takes for the signal to travel from the sensor to the object and back is then

used to calculate the distance based on the speed of the signal. The distance

can be calculated using the formula d = t
2 · v, where t is the time measured

and v is the propagation speed of the emitted signal.

2.1.1 Ultrasonic sensors

Ultrasonic sensors are a type of TOF sensor that use sound waves as the

emitted signal. They work by emitting a sound wave, which is reflected by

an object and received by the sensor. The time it takes for the sound wave

to travel from the sensor to the object and back is then used to calculate

the distance based on the speed of sound. The distance can be calculated

using the formula d = t
2 · v, where t is the time measured and v is the

propagation speed of sound in air. The approximate speed of sound, which

is sufficient for distance calculation is v ≈ 340 m
s . This means that the signal

travels approximately 10ms for a distance of 1.7m.

One advantage of ultrasonic sensors is that they are relatively low cost,

with prices ranging from a few euros per unit. They are also accurate and

precise enough for many use cases, including the presented goal in Chap-

ter 1, with a deviation in distance measurements of around a few millime-

ters [7, Fig. 3]. However, a major drawback of ultrasonic sensors is that they

require a clear line of sight and have limited resolution. Additionally, ultra-

sonic sensors emit sound waves that cannot be heard by humans, but may

be audible to animals such as cats and dogs. This can potentially cause stress

or irrational behavior in these animals, leading to potentially dangerous sit-

uations.
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2.1.2 Laser sensors

Laser sensors are a type of TOF sensor that utilize laser beams as the emitted

signal. They can be divided into two types: simple laser sensors and Lidar

sensors. Simple laser sensors emit a single beam in a fixed direction and

measure the time until it returns. Lidar sensors, on the other hand, use a ro-

tating mirror to emit beams in multiple directions, allowing them to measure

the distance in various directions and angles and produce a representation

of the surrounding area. While sophisticated Lidar sensors offer very fine res-

olution, they tend to be relatively expensive and bulky due to the rotating

mechanism. Like ultrasonic sensors, laser sensors also require a clear line of

sight.

Relevant signal processing algorithms for laser sensors may include doppler

lidar, range calculation, and error correction [31]. Doppler Lidar utilizes the

doppler shift of the reflected light to calculate the movement speed of the

object along the line of sight, while range calculation involves using the time

of flight information to calculate the distance to the object. Error correction

algorithms may be used to improve the accuracy of the distance measure-

ments by taking into account factors such as the wavelength of the laser and

the refractive index of the medium through which the signal is traveling.

For the intended use case an approximation of c ≈ 3 · 108 m
s is expected to

be precise enough. While sophisticated Lidar sensors are relatively large and

expensive, simple laser sensors on the other hand, are cheap and could be

considered as a viable option.

2.1.3 Radar sensors

Radar sensors are a type of TOF sensor that use radio waves as the trans-

mitted signal, and were originally patented in 1904. One advantage of radar

sensors is that the refractive effect of the Earth’s atmosphere can be neglected

in the measurements due to its small effect, so that the approximate speed

of light c ≈ 3 · 108 m
s can be used as the value for v in the distance calculation

formula d = t
2 · v [28, p.3]. However, a more accurate value for v may be re-

quired for very high accuracy. Compared to the ultrasonic sensor, the signal

propagation speed of radar sensors is much higher, which means that the

time it takes for the signal to travel from the sensor to the object and back

is much shorter. For example, the propagation time for a distance of 1.5m is

now only 10ns. Depending on the type of radar, the transmitted signal may

be reflected by the object before the original transmission is complete. For

pulsed coherent radars, this means that there is a direct scattering loss that re-

sults in a blind spot near the sensor, depending on the pulse length. A longer

pulse length is required for better Signal to Noise Ratio (SNR) and for mea-

surements over longer distances. As a general rule for Pulsed-Cohrent-Radar

(PCR), better SNR is associated with lower resolution and lower measurement

frequency. A Frequency-Modulated-Continuous-Wave (FMCW) radar, on the

other hand, continuously modulates the frequency and is able to receive the
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reflected signal even if the transmission is not complete. This is achieved by

filtering the received signal, which is based on the subtraction of the trans-

mitted signal from the received signal. This is possible because the received

signal has a different frequency than the signal just transmitted.

Radar sensors are available in a wide range of wavelengths, allowing an

optimal approach for the particular application. The wavelength of the emit-

ted signal can affect both the measurement accuracy and the power con-

sumption of the sensor. The energy of a photon is directly proportional to

its frequency, with the relationship E = h · f , where h is Planck’s constant.

Given the fixed propagation speed of electromagnetic waves, the frequency

of the signal is directly related to the wavelength λ = c
f . A longer wavelength

requires less energy but has a lower intrinsic precision [27].

There are several methods for detecting targets using radar, as described

in [28, chap. 6]. All of these methods assume that the reflection has a rea-

sonably high SNR. The idea is to compare the received reflection with a fixed

or relative threshold. The expected reflection depends on the material, dis-

tance, size and shape of the target. While the relative dielectric constant of

materials, and thus the reflectivity, depends on the frequency of the signal,

metal can be considered absolutely reflective for all commercially available

frequencies. Furthermore, the effective radar cross-section of simple metal

objects, such as the side of a car, can be approximated by σ = 4πA2

λ2 , where

A is the area of the metal side when hit near 90 deg. With this reflection

property, the expected received signal Pr can be calculated using the radar

equation Pr = Pt·Gt·σ·Ar

(4π)2·R4 · 1
Lt·Latm

, where Pt is the transmitter power, Gt is the

gain of the transmitter and R is the distance to the target. Lt and Latm are

constant losses due to the antenna Lt and Latm [21]. This received signal can

then be compared to either a fixed threshold or a threshold calculated or

measured based on the noise level. Since the signal propagates in a three-

dimensional space, the expected reflectance decreases with distance accord-

ing to the inverse square law represented by the term R4 in the equation. The

distance of the object can be taken into account as a factor when calculating

the threshold. Since the radar equation is affected by several radar proper-

ties, there is no general guideline for the configuration of the radar. All pa-

rameters, such as gain, transmit power and others, must be considered and

evaluated individually for each application. Advantages and disadvantages

must be carefully weighed to achieve the desired results. For example, while

high transmit power significantly improves the SNR, it increases the pulse

length while keeping the system’s power consumption constant. This means

a larger blind spot for PCR and fewer measurements in a given time. In Sec-

tion 2.2.1, the use of Cell Averaging Constant False Alarm Rate (CA-CFAR)

and special considerations for our use case that had to be taken into account

are explained in more detail.

In addition, some systems allow discrimination between different targets

and background/clutter by calculating the Doppler shift of the received sig-

nal.
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Similar to Lidar sensors, it is possible to use the Doppler shift to determine

the radial velocity of the target. This can be used to determine whether a tar-

get is moving towards or away from the sensor, which in turn can be used

to determine whether the target is part of the static background. However,

calculating the Doppler shift requires a series of measurements, and deter-

mining the radial velocity requires relatively expensive signal processing in

the form of Discrete Fourier Transform (DFT) [21, p. 35].

2.1.4 Camera sensors

Cameras are widely used for computer vision tasks because of their ability

to capture images of the environment, which can be processed to determine

the presence of objects. For instance, in the field of transportation, cameras

are used for traffic management and control, where they can detect vehicles,

measure their speed, and monitor traffic flow [6].

In addition, stereo cameras have been employed to calculate the distance

to objects by comparing the images captured by two cameras, making them

suitable for autonomous vehicles [33]. This technology has already been

implemented in advanced driver-assistance systems (ADAS), where stereo

cameras are used for lane departure warning, adaptive cruise control, and

collision avoidance [5].

Despite the potential benefits of using cameras for various applications,

there are several factors that make it a less attractive option. Firstly, the rel-

atively high cost of cameras make it a less attractive option compared to

the OBS. Additionally, legal restrictions regarding privacy concerns and data

protection can limit the use of cameras in certain situations, such as in public

spaces or areas where individuals have a reasonable expectation of privacy.

Furthermore, the setup required for cameras can be cumbersome, as they

require a fixed position and a clear view of the environment. This basically

restricts the possible positions of the camera to the bike rack.

In conclusion, cameras are a well-established and versatile technology for

computer vision tasks, but their applicability may depend on various fac-

tors such as cost, legal considerations, and setup requirements. Nonetheless,

with ongoing advancements in camera technology and image processing

techniques, cameras are expected to remain a possible solution for the chal-

lenges of determining the quality and availability of biking infrastructure.
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2.2 algorithms

Due to the advantages and disadvantages mentioned above, we chose radar

technology as the sensor of choice for our prototype. Table 3.1 compares

different radar platforms and Chapter 3 explains in detail why the XM122

IOT module was chosen and how it was used. For this section we’ll only

discuss the information relevant to the A111 60Ghz radar, a PCR, as not all

algorithms are suitable for this type of radar.

2.2.1 Presence Detection

In the field of radar, there are several signal processing algorithms that are

used to detect targets. The choice of algorithm depends on the type of radar,

the targets to be detected and the computing resources available. [28] pro-

vides an overview of different algorithms, their advantages and disadvan-

tages. Since we have chosen a PCR for our application, we will focus on the

algorithms suitable for PCR systems.

One of the simpler algorithms for performing detection tasks is the fixed

threshold algorithm. In this method, a predetermined or boot measured

fixed value is used to check whether a detection has occurred. The advantage

of this algorithm is that it has a fixed running time. Since the radar returns

n reflection samples, each must be compared to the threshold exactly once,

resulting in a running time of O(n). However, the fixed threshold algorithm

has several drawbacks. The threshold must be chosen carefully and may only

work under the initial conditions for which it was chosen. If the threshold

is too high, the algorithm will not detect any targets, and if the threshold is

too low, the algorithm will detect targets that are not there. This is particu-

larly problematic when the radar is used in changing conditions. Changes

in environmental conditions can cause the sensor to make false detections.

In addition, a fixed threshold is tied to the sensor’s settings. Changing the

pulse length, for example, will result in a different amplitude for an other-

wise unchanged situation.

Instead of using a fixed threshold, it is possible to use a Constant False

Alarm Rate (CFAR) algorithm. These algorithms dynamically recalculate the

threshold to achieve a CFAR, hence the name. A very prominent type of CFAR

algorithm is the CA-CFAR [28, p. 337]. This algorithm calculates a new thresh-

old for each cell under test (cut). This is done by summing all the other cells

and using that sum as the threshold. This has the advantage of increasing

the threshold as the noise level increases. This works particularly well when

the noise is homogeneous. However, it has the disadvantage of being much

more computationally expensive than the fixed threshold algorithm. Since

the sum must be recalculated for each cell to be tested, the runtime for a

signal with n cells effectively changes to T(n · (n − 1)) ∈ O(n2) for all useful

measurement series. There are more sophisticated variations, but the idea of

determining the threshold remains the same and is only slightly improved

by applying different types of filters. For example, calculating individual
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thresholds for the left and right sides of the cut, ignoring a number of cells

next to the cut called the CFAR guard, or even a combination of several CFAR

algorithms [21, ch. 9].

2.2.2 Distance measurement

Distance measurement is implemented using the calculation described in

Section 2.1. Due to the properties of metal, the flat metallic side of a car

should have a very strong Radar Cross Section (RCS). The strongest peak

should be close to or at the shortest distance from the sensor. This strong

peak should allow a very accurate distance measurement as the RCS should

be relatively narrow. As described in Section 2.1.3, calculating the distance

to one or more targets is relatively straightforward as the returned data

series are in the time domain. Once a detection has been made, the distance

correlates with the propagation time of the signal. The numerical value can

be calculated using d = d0 + i · ∆d, where d0 is the offset to the first cell for a

PCR, mostly determined by the blind spot caused by the pulse length, ∆d is

the distance between two sample points, also known as the resolution, and i

is the index of the sample point where the detection occurred.

2.2.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the

Discrete Fourier Transform (DFT) of a sequence of data points. The DFT is a

mathematical transformation that decomposes a sequence of data points into

their individual frequency components, which can be used to represent the

data in the frequency domain. In our case, these are the discretely sampled

amplitudes of the reflection [28, ch. 5.3]. The FFT is a faster and more efficient

version of the DFT and is widely used in signal processing applications such

as audio and image processing.

The FFT algorithm works by recursively dividing the input data into smaller

and smaller pieces. „The FFT algorithm achieves its efficiency by replacing

the computation of one large DFT with that of several smaller DFTs. “ [24,

p.86]

The FFT algorithm has a time complexity of O(n log n), which makes it

much faster than other methods of computing the DFT, such as brute force,

which has a time complexity of O(n2). This makes the FFT algorithm partic-

ularly useful for analysing large data sets or for applications that require

real-time data processing. For radar, this allows a so-called range-doppler

map to be calculated from multiple radar pulses. Each pulse provides infor-

mation about the distance to the target, and by transforming the individual

sweeps/pulses into the frequency domain, we can calculate the frequency

difference between the reflected and received pulse. This frequency change

is caused by the radial velocity of the target. The radial velocity v can be cal-

culated using v = 0.5 · c · fD

ft
, where fD is the frequency difference between

the transmitted and received pulse, ft is the frequency of the transmitted
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pulse, and c is the speed of light [21, ch. 2-6]. This calculation only works as

long as the frequency of each pulse is twice the frequency difference. This

means that in the case of pulsed radar, the pulse length must be long to

cover greater distances and have a better signal-to-noise ratio, but the pulse

length must be short enough to measure the expected radial velocities.

One possible implementation is the recursive depth-first approach pro-

posed in [19, Listing 1.] and commonly known as the Cooley-Turkey FFT

algorithm. The algorithm achieves its efficiency by recursively splitting the

input into smaller and smaller pieces and then combining the results of the

smaller pieces. This is done by calculating the DFT of the even and odd in-

dices of the input data and then combining the results. However, the imple-

mentation presented does not seem suitable for the embedded XM122 due

to the new memory allocation for each recursion. It may be possible to inves-

tigate an implementation that rearranges the calculations to avoid recursion

and memory allocation.

2.2.4 Clustering Algorithms

Since the goal of this project is to identify dangerous areas or roads, a logi-

cal approach would be to use some form of clustering algorithm to identify

these areas. Clustering is a common technique for explorative data analysis.

This would allow us to identify areas where there are a lot of close encoun-

ters. Since we will be working with geographic data, the research will focus

on clustering algorithms that are better suited to handle geographic data. [14,

ch. 07, p.149] gives a very good overview of different clustering algorithms

and their use cases.

2.2.4.1 k-means

k-means is probably one of the most popular clustering algorithms. k-means

divides the given data points into exactly k clusters. This is done by selecting

k random data points as initial cluster centres, and then assigning the data

points to the nearest cluster centre. This makes k-means a distance based

clustering algorithm. The new data may affect the cluster centre, which has

to be recalculated. This is repeated until the clusters no longer change. K-

means is interesting because it is suitable for large datasets, which is what

we expect to end up with in production, as k-means is reasonably scalable

and an efficient algorithm. The big problem with this algorithm is that it

requires the user to specify the number of clusters k. One approach is to use

the elbow method to determine the correct number of clusters, but this also

means that the algorithm has to be run for each k that needs to be tested.

Furthermore, the algorithm is susceptible to outliers because they affect the

mean values of the clusters [14, p.157]. Additionally k-means will always

assign all points to a cluster. This is in contrast to the intended use case of

identifying areas with a higher measurement density than other areas.
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2.2.4.2 DBSCAN

Since we do not know the number of clusters to expect, one approach would

be to use density based clustering algorithms. One possible algorithm would

be density-based spatial clustering of applications with noise (DBSCAN).

DBSCAN will determine the number of clusters by creating a cluster for

each point that has at least a certain number of neighbours MinPts within

a certain distance ϵ. These points are called core points. A non-core point

within ϵ of a core point is assigned to the same cluster as the core point

and is considered directly reachable. A point within ϵ of a directly accessi-

ble point is considered to be densely accessible. With this set of rules, the

initially identified clusters will naturally grow and merge until all points are

either assigned or considered outliers [14, p. 171]. The big advantage for our

use case is that we do not need to specify the number of clusters, the algo-

rithm will identify them automatically. Furthermore, the parameters for this

algorithm can be naturally translated into the real world application. For ex-

ample, ϵ can be translated to the real world distance between two points, e.g.

in km. Additionally, MinPts can be chosen to correlate with a certain per-

centage of all overtaking maneuvers that were considered dangerous. This

allows sensible parameters to be selected for the algorithm without knowl-

edge of the total collected data that may be available at the time of algorithm

selection. To reduce the overall runtime it might be possible to run the algo-

rithm twice, once with a high ϵ and MinPts to identify one cluster per city,

allowing a partitioning of the data into smaller subsets. Then cluster each

subset with a much smaller ϵ to perform the final clustering highlighting the

danger zones within each city. We would expect this to reduce the runtime

of the algorithm because the high ϵ would allow a fast assigning of points to

a cluster in the large dataset, and the low ϵ on the smaller dataset would not

impact the runtime as much as operating on the entire dataset because there

are less distances to compare to. This might not even be necessary because

DBSCAN is generally already suited for large scale datasets.

2.2.4.3 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) sepa-

rates it from the previous two algorithm in the aspect that it does reduce the

amount of data to be processed by initially creating a summary. Furthermore

the fact that BIRCH initially summarizes the datasets into subclusters before

reducing the information to retain of this cluster [34]. This makes it suit-

able for large datasets because it summarizes dense areas. A common use

case for BIRCH was the separation and compression of images by identifying

pixel clusters. BIRCH can however be adapted to use the clustering approach

of other algorithms by using the BIRCH summary as input for the clustering

algorithm. Since we already presented the idea of separating the data into

subsets, one per city each, BIRCH might be the ideal algorithm for this goal,

especially because it can process large datasets even with limited memory.

Just as k-means however it is necessary to specify the expected amount of
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clusters beforehand. For the separation of the data into subsets this should

be fine however, as the amount of participating cities can just be seen as

an upper limit to avoid splitting one city into multiple subsets. Having two

cities in the same subset does not matter as the final clustering will still be

able to identify the danger zones within each city.
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2.3 related work

A number of projects have been carried out in the field of bicycle accessories

and research. This section gives an overview of the most relevant projects.

2.3.1 Open Bike Sensor

The Open Bike Sensor is a project based on the „Project Radmesser“1 launched

in 2018. These projects use a TOF sensor, currently either an HC-SR04 or

JSN-SR04T ultrasonic sensor, to measure the distance to cars. However, the

user has to trigger each measurement individually. With the OpenBike sen-

sor, this is done by pressing a button on the bike’s handlebars. Placing the

burden of ensuring high data quality on the user would require a significant

change in the attractiveness of the bike, and the user would need to be aware

of the system. This could distract the user and lead to accidents. In addition,

the OpenBike sensor has to be purchased, assembled and programmed man-

ually, with instructions requiring basic soldering skills and some computer

affinity2. This may be one of the reasons why the OBS isn’t as well known

as it could be. As citizen science depends on the participation of the general

public, this is a significant drawback. As the project has been running since

2020, they have already been able to demonstrate the value of the data in a

project in Berlin. The data was used to compile various statistics and create

maps that provide insights into the situation of cyclists in Berlin.

2.3.2 Garmin Rear Radar

Garmin has a product called „Varia“3. This product uses radar to detect

approaching cars and warn the cyclist. While this device can automatically

detect cars, it is not able to measure the lateral distance to passing cars.

While it can tell the speed and distance of an approaching car, it does not

really give an indication of the cyclist’s safety, as a fast car could pass the

cyclist at more than the required safety distance. In addition, the price of

these devices is €200 or more, which is a significant barrier to entry.

2.3.3 Street condition classification

In related work, a pulsed coherent radar has been used to perform material

and state detection to identify road conditions. This was done by modelling

different material properties with the reflection and scattering behaviour as

well as the dielectric properties of the materials. In this way they were able

to use the amplitude to distinguish between wet, snowy and dry asphalt [18,

p.40]. At the same time they claim in their conclusion that the A111 radar is

limited in it’s range in a fast moving environment.

1 https://interaktiv.tagesspiegel.de/radmesser/kapitel7.html

2 https://www.openbikesensor.org/docs/hardware/v00.03.12/build-instructions/

3 https://www.garmin.com/de-DE/p/601468

https://interaktiv.tagesspiegel.de/radmesser/kapitel7.html
https://www.openbikesensor.org/docs/hardware/v00.03.12/build-instructions/
https://www.garmin.com/de-DE/p/601468
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2.3.4 Stationary radar for bicycle safety

Another project is a stationary professional 24GHz FMCW radar that can be

used to map the situation at hand. While this is a very nice technique to

digitise and analyse already known problem spots, the device is too big to

be used on a bicycle. [13]





3
T H E A RT I FA C T

This chapter describes the artifact we created, its components, and why those

components were chosen. It also describes the implementation of the artifact

and the challenges encountered during the three implementation iterations.

The first implementation was based on the distance detector provided by

the SDK, the second implementation was based on the envelope service pro-

vided by the SDK, and the third implementation was based on the power bin

service. Each implementation has been improved based on the evaluation of

the previous one. All implementations can be flashed and tested following

the instructions in [3, 2.1 and 2.2].

Figure 6.2 shows an abstraction of the setup, starting with the radar, trans-

mitting the measurements via BLE to the Android app, adding the location

information and storing the data. At the end of the tour, the data is up-

loaded to the backend where it is pre-processed and stored in a dynamodb.

A node.js web application is used to visualise the data, and additional lamb-

das are used to simplify database access. This chapter focuses on the imple-

mentation of the radar signal processing.

3.1 hardware selection

Based on the advantages and disadvantages presented in Section 2.1, we

came to the conclusion that pulsed coherent radar is a promising technol-

ogy without violating people’s privacy. Despite the drawbacks presented in

the paper referenced in Section 2.3.3, we decided to go with this type of

technology. Research has shown that sophisticated signal processing should

be able to compensate for the poorer SNR when working in a long range,

rapidly changing environment. Due to the optimal dielectric properties of

the intended target and the near optimal 90° orientation, we still expect the

radar to perform reasonably well. Assuming that most cars are made of

metal, combined with a large and relatively uniform surface, it is expected

that there will be a significant difference in reflection strength compared to

hedges, pedestrians, wooden walls and more.

There are several possible radar chips available for purchase. Table 3.1

summarises the information available in a tabular format. We have chosen to

use the XM122 iot 60Ghz PCR radar chip developed by acconeer [25]. Mainly

because this chip has a very competitive price of only ≤ 35€ each, contains an

nrf52840 cpu and a Bluetooth antenna in a very space efficient circular layout.

A front and rear view of the sensor is shown in Figure 6.4. This package

offers almost everything you need at a price close to or even below that of

the OBS. 60Ghz corresponds to a wavelength of ≈ 5mm, which allows for

very energy efficient radar pulses at short ranges, as discussed in Chapter 2.
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Table 3.1: Manufacturer specifications of possible 60GHz radar platforms, as far as
they are available.

XM122 DEMO BGT60LTR11AIP XE121 AWR6843AOPEVM

Frequency 60GHz 60GHz 60GHz 60GHz

Radar Type PCR FMCW PCR FMCW

Range up to 7m up to 14m up to 20m 12-15m for people detection

Resolution 0.5mm limited by measurable frequency difference ? ?

Bluetooth Yes No No No

CPU nrf52840 external (usb) ? ?

Clock Speed 64MHz - ? 600Mhz

RAM 256kB SRAM - ? 768KB

Flash 1MB - ? 1.4MB

Price ≈ 35€ ≈ 324$ ≈ 191€ ≈ 135$

Size 33mm circular 64 mm x 25.4 mm size ? ?

While a FMCW radar might be more accurate and faster with a better SNR, it

comes at a much higher price. A possible chip of similar size to the XM122

costs ≈ 130€ [2].

Both sensors have the advantage that they can be used without restrictions

as long as the equivalent isotropically radiated power (EIRP) is below 0.1W

on average, as regulated by the FCC in 2021 [10].

For these reasons we have chosen the XM122 for our prototype, but other

radar chips may be equally or more suitable. Once the platform was selected,

the first step was to evaluate its basic functionality and characteristics. An

important aspect outlined in Chapter 2 was the fact that the amplitude of

the reflections would be used to differentiate between cars and other objects.

To see how well this worked and at what distance, we connected the sensor

to a PC to stream the data, starting with the default settings for each mode

supported by the sensor.

At the time of writing, the SDK for the A111 has been split into 4 different

types of analysis (services).

• Power Bins Service - This service provides a histogram of the power of

the received signal correlated with the distance to the target.

• The Envelope Service - This is a finer grained version of the Power

Bins Service. A sequence of radar pulses is transmitted, sampling the

received reflections every 0.5mm, averaging and time smoothing the

result to produce a stable signal.

• IQ Service - This service is not used in this project as it is used to detect

small movements.

• Sparse Service - The raw signal is sampled every ≈ 6cm. This mode

produces a series of arrays, each representing a sweep. The arrays con-

tain the raw data from the radar chip and can be used to implement

custom algorithms such as FFT to extract the Doppler shift. Due to the

large number of sweeps, this introduces a significant error in distance

measurements.

These services differ in computational complexity, pulse length, sampling

rate and other performance metrics. In particular, pulse length is an impor-
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tant factor in radar performance. The longer the pulse, the more energy is

consumed and the lower the resolution of the range measurement. How-

ever, the additional energy allows a longer sweep length by improving the

SNR, but also increases the blind spot near the sensor due to possible direct

leakage. Using the Power Bin service, we positioned the sensor in front of

various targets and recorded the amplitude of the reflections. As expected,

the amplitudes vary with material and distance. In general, we observed

in the raw data that a human at 1m produces a reflection that is as strong

as a car at 2.5m. A car at the same distance as a person produces a reflec-

tion about 3-4 times as strong. While a brick or wooden wall will produce a

stronger reflection than a human, it is still only half as strong as a metal ob-

ject. Furthermore, at a distance of around 1.5m, reflections from non-metallic

objects become so weak that they cannot be reliably distinguished from back-

ground noise. Figure 3.6 illustrates this observation by plotting the average

amplitude measured per distance and target.

3.2 first implementation

For the chosen hardware, the first implementation was based on the distance

detector provided by the SDK. This abstraction is implemented on top of the

envelope service. The code can be referenced in Listing 6.2. With the SDK

implementation, the code is quite simple. As long as a target is detected,

send the measured distance. If no target is detected, send a distance of 0.

This is the highest level of abstraction provided by the SDK and the easiest

to use. To use it, you need to set a threshold and choose how to sort the de-

tected objects. Valid sorting strategies are sorting by occurrence, reflectivity

or relative reflectivity as a function of distance. The maximum number of

detections returned must also be set. Finally, the radar-specific settings such

as start point, sweep length, gain and other settings must be set according

to the requirements defined in Chapter 1.

However, the resulting radar performance was suboptimal for our use

case. Although the distance measurements appeared to be very good, it did

not take much evaluation to conclude that the distance detector was not

suitable for our use case. This was mainly due to the low frame rate of less

than 6Hz. This is mainly due to the fact that the Distance Detector uses the

Envelope Service, which combines a series of successive frames to produce

a stable and accurate signal optimised for distance measurements. To ensure

reliable detection of fast moving objects, the sampling rate must be high

enough. According to the sampling theorem, the sampling rate must be at

least twice the highest frequency component of the signal. Assuming that

cyclists pedal at 25 km
h ≈ 7 m

s and cars overtake them in a city at a speed of

less than 50 km
h ≈ 14 m

s , it can be assumed that the speed difference is usually

less than 7 m
s . Considering the measurement angle of the selected sensor and

assuming a symmetrical setup, the possible measurement duration t can be

described using h as the height of the spanning triangle shown in Figure 3.1,
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∆v as the velocity difference and α as the measurement angle, as shown in

Figure 3.1, the following relationships can be derived:

s = 2 · h · tan(
α

2
) (3.1)

t =
s

∆v
(3.2)

d =
h

cos( α

2 )
(3.3)

These functions are relevant to the detection algorithm because they de-

scribe the assumptions made previously. For example, the effect of a car

approaching and then moving away can now be compared to the expected

values calculated with Equation 3.2. Let’s say a minimum distance of 1m was

measured, then we can calculate the expected maximum distance when en-

tering the Field of View (FOV). d = 1
cos(40)

≈ 1.3m. It is also very useful to be

able to calculate the expected duration of a car in the FOV using Equation 3.2.

Assuming a minimum distance of 0.5m and a maximum ∆v of 7 m
s , we can cal-

culate an expected lower bound for the duration t(0.5) =
2·0.5m·tan(40)

7 m
s

≈ 0.12s.

This information is relevant because it means that our implementation must

achieve a measurement rate of at least 16Hz if we are to be able to reliably

measure a passing vehicle.
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Figure 3.1: Sketch of the measurement angle of the sensor and it’s correlation to the
measurement duration.

Another minor aspect is that the implementation does not allow a dis-

tance dependent threshold. This means that the threshold is the same for

all distances. This is not optimal because non-metallic targets can produce

a reflection at close range that is similar in strength to a metallic object at
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distance. Therefore, the distance detector would detect non-metallic objects

at close range. This also leads to random background noise spikes exceed-

ing the threshold and triggering a false positive measurement. This problem

could be solved by requiring a minimum number of measurements to be con-

sidered a valid measurement. However, this would require a much higher

measurement rate and would not solve the problem of non-metallic objects.

In addition, increasing the measurement rate will require a significant sacri-

fice in either sweep length or pulse length. Both changes would result in a

reduction in range. The reduced pulse length would also worsen the SNR.
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3.3 second implementation

Based on the observations made in the previous section, we decided to im-

plement the distance detector in a different way, hoping to achieve a higher

frame rate. This implementation was also based on the envelope service.

This allowed much finer grained access to the radar settings. In addition to

sweep range and pulse mode, running the envelope service directly allowed

settings such as Hardware Accalerated Average Samples (HWAAS) and other

settings to be adjusted. Reducing the HWAAS to 1 resulted in a less stable but

much more sensitive measurement, as objects that were only briefly in the

FOV were no longer averaged. Furthermore, instead of using a fixed thresh-

old, we have now implemented a CA-CFAR variant that takes the current

distance into account. This implementation can be referenced in Listing 6.3.

This implementation barely achieves the required update rate. Still a mas-

sive improvement over the previous implementation. We did not manage

to get above 12Hz, mainly due to the fact that the required sweep length

is sampled every 0.5mm in the envelope service. This means that a sweep

length of 2700mm results in 5400 individually sampled points. As a result,

the distance measurement is expected to be very accurate. In addition, the

doubled frame rate can be set to 2 and is still no slower than the previous

implementation.

3.3.1 Distance evaluation

To evaluate the accuracy, precision and range of this implementation, we

performed the first experiment defined in Chapter 1.

Figure 3.2 shows the individual measurements and their amplitude, again

confirming the initial observations that the amplitude is significantly differ-

ent for metal objects and therefore suitable for differentiation using distance

and amplitude dependent thresholds. The lower amplitude near the trailer

was caused by the setup error. The bicycle was not standing upright, so the

sensor had a significant part of the FOV occupied by the tyres, resulting in

a lower overall amplitude. The graphs in Figure 3.3 show the absolute and

relative measurement errors. After examining the data, we have concluded

that this error is caused by our experimental setup. Therefore, we can’t infer

the real accuracy of the envelope implementation. But even if the setup was

perfect, the largest error was 10cm, which would still be acceptable.

Another indicator supporting this explanation, is that an analysis of the

data showed, that the spread between the minimum and maximum distance

measurement, in a single measurement series, was 6cm. The aggregated re-

sults can be seen in the Table 6.1. Even when using the worst case in our

measured data as the measurement error, the implementation was able to

measure the distance of metal objects up to 3m with the required accuracy.

The measurement series for non target objects, e.g. the wall shows a sig-

nificant measurement error because the reflection produced was not strong

enough above 1.5m to be reliably detected, resulting in random locations be-
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ing identified as the highest amplitude, explaining the measurements at ran-

dom distances with an amplitude at threshold. This is expected behavior as

the assumption that non metal objects, e.g. a wall, will produce significantly

weaker reflections allowing to filter them out in the final implementation.

Figure 3.2: shows a scatterplot of all measured amplitudes from the Envelope ser-
vice. Interestingly, the radiator amplitude at 1.5m has a lower amplitude
compared to the following distances, which is unexplained. As we did
not have a fixed measurement threshold, objects with too weak a reflec-
tion at a given distance will produce random distance measurements
due to background noise.

3.3.2 Vehicle detection evaluation

The next step was to evaluate the reliability of the sensor during target de-

tection. Some of the singular measurement data obtained can be referenced

in Figure 3.4. For readability reasons, only an extract can be shown, but no

additional information can be derived from the rest of the data, as the gen-

eral pattern is the same. In this figure you can see the dashed lines where a

car passed the sensor and was noted by a human. The blue dots represent

distance measurements taken by the radar sensor. While the detection of

cars was very reliable, with very no false positives and almost no false nega-

tives during the test, one very important flaw was discovered. A car passing

next to the sensor will not produce a single measurement, but will result in

multiple measurements. The implementation on the sensor should therefore
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(a) (b)

Figure 3.3: shows the measurement error, absolute (a) and relative (b), per set up
experiment with the 95% confidence interval. The measurement error is
most likely caused by the experimental setup and not by the measure-
ments themselves, however even the recorded error would still be within
acceptable limits.

be improved in the next iteration to produce a single measurement for each

passing car. This could be achieved by further increasing the frame rate and

adding some sort of timeout before a detection is considered complete. How-

ever this timeout should be selected carefully to avoid closely passing cars

into one. Overall, the results seem very promising and the implementation

is already very reliable, considering that no false positives occurred during

testing in a stationary setup.
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Figure 3.4: This graph shows a short section of the timeline of cars passing the
sensor and the measurements taken using the envelope service. Only a
snippet is shown to keep the graph readable. The rest of the data gives
no additional information.
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3.4 third implementation

For the third iteration, we started with a different mode of operation. Instead

of the envelope service, this implementation was based on the power bin

service. The main difference between the envelope service and the power

bin service is that the power bin service samples the reflection every 0.5mm,

but groups them so that the resulting data is composed of bins with a width

set by the user. This allows a higher frame rate because less data has to be

moved between the radar and the microcontroller. The disadvantage is that

the resolution is lower and the data is not as accurate. Using a bin width

of 2cm, and thus reducing the sample points to 135, the frame rate was

increased to up to 40HZ, but to ensure a stable frame rate we locked it at

30Hz to have spare time for additional tasks such as sending the data when

necessary, and to reduce power consumption.

The CA-CFAR implementation of the second iteration was reused and fur-

ther improved by adding in-frame signal smoothing. This means that instead

of testing each cell individually, the algorithm uses a pre-defined number of

neighbouring cells to determine the actual expected value of the current cell.

Currently, all adjacent cells are used equally, but a further iteration could

instead weight the cells based on their distance from the cut. The reason for

this change is that we have found that random fluctuations in the ampli-

tude, caused by interfering background noise, can sometimes cancel out the

reflection. This random noise artefact can mess up individual cells, but is

very unlikely to affect several adjacent cells at the same time. This should

additionally reduce the measurement jitter seen in the second iteration as it

moves the measured peak closer to the centre of the overall peak. It also fur-

ther reduces the likelihood of false positives by averaging out random cells

above the threshold.

Based on the amplitude observations from the previous iteration, we mod-

ified the CA-CFAR algorithm to take into account the distance of the target

when comparing to the threshold. Furthermore, the new algorithm mea-

sured the distance not only to the strongest reflection, but also to the first

reflection above the threshold. This was done to avoid detection of close

non-metallic targets. The required threshold is now additionally influenced

by the distance to the sensor. A closer object requires a multiple of the thresh-

old, while a further object only requires to be slightly above the threshold to

be considered a detection. This is due to the fact that wooden objects or hu-

mans produce a reflection below the noise when they are beyond a distance

of ≈ 1.5m with the selected sensor configuration.

Another important change was the addition of a timeout of ≈ 75ms be-

fore a detection is considered over. This correlates to 3 consecutive measure-

ments without detection in our current duty cycle. This was done to solve

the problem of a single car being separated in multiple detections discov-

ered in the second iteration. In addition to the minimum required amount

of measurements this resulted in very promising results in regards to the

vehicle detection. In order for a metal car to not be detected, it has to pass
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the sensor in less than 100ms. In reference to Figure 3.1 this means that the

car needs to pass the cyclist with a δv > 50 km
h . This would be a possible,

but very very unlikely scenario, simply due to the danger of such a high

speed at such a high distance. If the car passes at 2m the required δv would

be ≈ 95km/h. It is therefore save to assume that for all practical purposes

the minimum amount of required measurements won’t cause any false neg-

atives, but basically reduces the amount of false positives to a minimum by

avoiding the detection of small metal objects such as Lamp posts, since they

produce usually only a single reflection above the threshold. This is mostly

due to their RCS reflecting to the sensor only when at the center of the pulse.

3.4.1 Distance evaluation

The distance evaluation was carried out in much the same way as in the

second iteration. The two main differences were that in this setup we made

sure that the bike was standing upright, as if it were in motion, and not

on the kickstand. The second difference was that instead of measuring the

distance from a single point, we now set up the bike so that the front and

back of the bike were the same distance from the target, resulting in a much

more parallel and repeatable setup, reducing the error caused by it. The re-

sults are again largely as expected and are shown in Figure 3.6. As we can

see from the changes in the required amplitude compared to the threshold,

in Figure 3.5 the measurements at random distances when using a wall as a

target above 1.5m no longer occur. Looking at the measurement errors in Fig-

ure 3.8 and Figure 3.7 we can see that the human error has been significantly

reduced with the new setup. The new sampling with the new implementa-

tion shows an expected measurement resolution of 2cm. As we do not really

see this in the results, we can conclude that the setup is still not precise

enough to measure the absolute error of the sensor. However, we can see

that the error is still well below the initially defined acceptable level of 10cm.

Table 6.2 shows a maximum spread of 4cm at 2.5m. This seems reasonable,

especially considering the expected resolution, which would mean that if the

target is at the nth measurement point, then by pure chance noise has caused

the adjacent measurements to be the strongest reflection. Considering the

fact that we have multiplied the measurement rate, this error is still accept-

able, especially considering that this is the worst case of the measurements

obtained.

3.4.2 Vehicle detection evaluation

For this experiment, no changes to the setup were made and it was repeated

exactly as described above.

The data plot shown in Figure 3.10 shows that the changes to the im-

plementation had the desired effect. The reference moments are shown in

Figure 6.8 and Figure 6.9. A single car produces only one measurement as it

passes the sensor, while the duration of 75ms is short enough to separate the
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Figure 3.5: shows a scatterplot of all the amplitudes measured by the Power Bin
service.

cars properly. Furthermore there was no false positive measurement, and no

car was missed by the sensor. The selected section also shows the remain-

ing problem. The only car without distance measurement, was in fact not

missed by the radar, but the measurement got lost while transmitting to the

phone. This needs to be addressed in the future. Secondly, cars in the oppo-

site direction are still being detected, but this is to be expected and is less

an implementation problem than a definition problem. To address this, ex-

pert knowledge from people experienced in road design is needed. These

experts should advise on how to deal with this data, as it is technically a

false positive, but if a car is heading towards a cyclist and passes the cyclist

at close range, this would still be a dangerous situation and could therefore

be valuable information. One example illustrating this can be referenced in

Figure 6.10.

As we have been running in favourable conditions, we need to consider

what would happen if the conditions were not so favourable. For example, as-

suming rain as an evenly distributed noise, we can conclude that this would

simply result in a higher calculated threshold. Therefore we can safely as-

sume that conditions such as rain, snow, high humidity or other weather

conditions would have little or no effect on the results. The only way the

weather would affect the readings would be through the sensitivity of the

sensor, which would not result in false readings, only missed cars. This
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Figure 3.6: shows the average amplitude as a function of distance. The dashed line
shows the background noise.

should be fine, as it will only minimally affect the analysis and the data

will still be usable.
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(a) (b)

Figure 3.7: Measurement error in (a) absolute and (b) relative values for the power
bin implementation. The resolution is now 2cm, but the error is still in
the range of 6cm.

Figure 3.8: shows the histogram of all measurement errors of the power bin imple-
mentation. Since the power bin implementation has a resolution of 2cm,
the error would be limited to these increments if the setup were perfect.



3.4 third implementation 33

Figure 3.9: shows a histogram of the variance of the measurements. As expected
most measurements show very little variance. The maximum recorded
variance would still allow a relatively accurate measurement, but also
show that individual measurements might not be accurate enough, to
for example, draw conclusion about the minimum distance during an
encounter.
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Figure 3.10: shows an interesting section of the data obtained. The dots are mea-
sured distances and the dashed lines are cars passing the cyclist, ob-
tained from the reference video. This section is particularly interesting
because it shows that the changes made in the third iteration allow a
single car to produce only one measurement, but at the same time it
highlights that cars in the opposite direction are detected when they
come closer than 3m. This graph also shows a case where a packet loss
caused a missed measurement. This can be seen in the appendix.



4
A N A LY S I S

In this chapter we will present different analysis techniques to evaluate the

collected data. We start with a sample measurement to show how the data

can be interpreted. This is followed by a simple tabular analysis and then

more complex techniques such as aggregation and clustering methods. To

obtain the data, the code produced during the third development iteration

was used.

To do this, we chose a test route that starts from a common point, a su-

permarket, and makes a round trip along a main road. This road provides

some infrastructure in the form of an „additional sign 1022-10“ allowing cy-

clists to use the pavement. This infrastructure is not continuous, allowing

a direct comparison between different conditions. The route also includes a

section through a park where trees will be less than 2m to the left of the cy-

clist, providing an opportunity to test the detection algorithm when passing

unwanted objects within the FOV and range of the sensor.

We also want to quickly review the general rules of the road for cyclists

over the age of ten. In general, a cyclist must use the road. They must ride

on the right-hand side of the road. In doing so, they should keep a sufficient

distance from the kerb and parked cars [LG Berlin, Az. 24 O 466/95]. This

is usually interpreted as the width of a door to a parked car. However, it is

also required that if there is a cycle lane with the sign „traffic sign 237 cycle

lane“ you must use it. However, „traffic sign 1022-10 bicycle lane free“ does

not require cyclists to leave the road, and if they decide to do so, they must

cycle at walking speed as defined by the StVO. With this in mind, we can

conclude that cyclists are allowed to use the road along the entire length of

the experimental route. In some sections, the use of the footpath is allowed

if desired.

4.1 example measurement

Before starting the general analysis of all the data collected, it is important

to gain an understanding of the data collected. To do this, we will present

a single measurement and explain how the different values can be used to

interpret the situation and draw conclusions about the reliability of the mea-

surement. Figure 4.1 shows the picture that belongs to the data in Table 4.1.

Going through the rows in the table, we can see that each row with 0 or

1 measurements was a timeout transmission, and can be attributed to the

lack of a sufficiently strong reflector. Furthermore, the second row can be

correlated to the red car that passed at a considerable distance. As expected,

the distance to the strongest and the first reflector are very close. Further-

more, the variance of both measurements is small enough to conclude that
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the measurement is reliable and that the car moved in a relatively straight

line. The second detection can be seen in the fourth row. This detection be-

longs to the image shown in Figure 4.1. As we can see, both the distance to

the strongest reflector and the distance to the first reflector are well below

the required safety distance. Interestingly, the measurements aren’t as close

together as they are for the car. However, looking at the picture of the vehi-

cle, a valid explanation would be that something further inside the vehicle

is a stronger reflector than the outer frame of the truck. This is particularly

interesting as it would mean that the strongest reflector would always pro-

duce measurements of a defensive nature, while the first reflector would

produce a measurement that could be considered pessimistic. If we consider

the sample variance of both measurement variants, we can estimate the con-

fidence interval, assuming the measurement error is normally distributed,

with d ±
√

σ2, giving a 95% interval of [1.12m, 1.32m] for the strongest reflec-

tor measurements and [0.83m, 1.28m] for the first detection measurements.

With this in mind, we will use the measurement at the first reflector in the

following analysis, unless otherwise stated. Furthermore, from this measure-

ment it can be concluded without doubt that this was indeed a dangerous

situation. Both measurements show a similar variance, because the variance

is not caused by inaccurate measurements, but because the distance initially

decreases, reaches a minimum, remains at this level until the next cyclist

passes, and then increases again when the rear of the car passes the sensor.

If the actual minimum distance to the car is desired, it would be a viable op-

tion to use the average of the first quartile as a minimum estimation. Using a

quartile instead of a fixed number of measurements has the advantage that

we do not need to know how many measurements make up the „close “ part

of the situation. We did not do this, simply because that for the intended use

case it is more interesting to see how the overall situation unfolded. The

reason for this can be illustrated by comparing two different situations. Sit-

uation A is where a car passes a cyclist in a straight line at an exemplary

minimum distance of 1.2m. Situation B is where a car initially overtakes the

cyclist at more than the required safety distance, without a clear view, and

suddenly has to reduce the safety distance to 1.3m to avoid oncoming traffic.

While situation A produced an overall lower measurement with a small con-

fidence interval, situation B is arguably the more dangerous situation, with

a naturally larger variance in its measurements. In addition, situation A may

give a bad impression, while situation B may actually be scarier. This leads

to another aspect that the measurements can’t accurately capture. Since the

aim is to make cycling more attractive, the perception of safety is also impor-

tant. And a large and noisy vehicle passing at a certain distance may give a

very different impression to a smaller vehicle passing at the same distance.

The first approach to analysing the collected data was simply to generate

a table. Table 6.3 shows the first ten data points, ordered by the average

distance of the location in ascending order. This allows you to identify the

locations with the lowest average distance, and therefore the most dangerous

locations. Additionally, filtering out locations with a high standard deviation
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Figure 4.1: shows the screenshot displaying a typical encounter. Notably is that the
correlation to Table 4.1 is perfect. The red car was measured, then a
timeout occurred, and then the truck was measured. Furthermore it is an
interesting example because the red car produced a measurement where
the first and strongest reflector basically is the same distance, while the
truck produced a measurement where the first and strongest reflector
are significantly different. This is the reason why we will use the first
reflector in the following analysis. Since the measured distance of the
first reflector correlated better with the intended use case.

Table 4.1: measurements from 2023-03-01 10:52:00 to 2023-03-01 10:52:30 between
0.0m and 3.1m

timestamp (GMT) d(m) σ
2
d h(m) σ

2
h v N

2023-03-01 10:52:06.604 3.00 0 3.000 0 6.08 0

2023-03-01 10:52:08.891 2.24 3729 2.230 4009 5.98 12

2023-03-01 10:52:11.269 3.00 0 3.000 0 6.17 0

2023-03-01 10:52:13.028 1.22 10047 1.054 50075 5.57 37

2023-03-01 10:52:16.968 3.00 0 3.000 0 5.83 1

2023-03-01 10:52:19.802 3.00 0 3.000 0 5.83 1
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helps to filter out locations where the data is not yet conclusive. We did not

filter at this point as we wanted to see the full picture.

However, a possible filter would be your own speed of movement. If the

cyclist is stationary, the data collected may not be representative of the actual

situation, for example if the bike is parked on the pavement. Another filter

could be the number of measurements. If the number of measurements is too

low, the data is not conclusive enough to draw conclusions. The same goes

for the standard deviation. Using the standard deviation of a detection, we

can argue about what range the car must have been in with some confidence.

A lower bound for the width of this interval has already been presented in

Figure 3.1. Another indicator of the reliability of the data is the difference

between the strongest and the first reflector. This value will diverge because

the first reflector will usually be the shortest distance to the car, while the

strongest reflector should be the distance to the largest area with the best

reflective properties such as angle, etc. If the difference is too large, this may

indicate that the measurement is not reliable.

4.2 map view

The next step was to visualise the data on a map to make the data more

visually appealing. The maps were obtained from openStreetMaps. Due to

the terms of use, it is not allowed to automatically query map renderings.

For this reason, we currently output the download URL when generating

the map. This allows the user to manually download the map background

without violating the openStreetMaps terms of use. Figure 4.2 shows the

map with the locations marked, including the timeout broadcasts where no

car was detected. While this map is difficult to read in terms of interest-

ing locations, it does serve the purpose of visualising coverage. If we only

transmitted when a car was detected, the system would have no way of dis-

tinguishing between areas where no data was available because no one was

cycling there, and areas where no data was available because no dangerous

situation occurred. To identify dangerous locations, the data must first be

filtered. One logical step is to use only measurements where the measured

distance was less than the required safety distance. The required safety dis-

tance actually depends on the bicycle used, as the required 1.5m in cities

starts at the handlebars. So the handlebars must be added to the required

distance. Individual measurements can be linked to a user by their phone’s

UUID. This is why we had to include non-anonymous data in the data col-

lected. In addition, we are usually only interested in measurements where

the cyclist is moving. Therefore we added a filter to remove data where the

measured speed is below 1 m
s . This speed is chosen arbitrarily and is simply

based on the idea of removing as little data as possible from the follow-

ing analysis. For the same reason, we have not added filters based on the

variance of the measured distance, the accuracy of the location provided, or

other items that are theoretically a viable filter to maintain a high quality

standard. Filtering based on these values becomes most interesting when
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analysing crowdsourced data to draw conclusions. At this point, we also

want to keep questionable data points to be able to identify possible prob-

lems with the sensor.

With this subset of the collected data, we generated a map by simply

grouping based on rounding the latitude and longitude to achieve group-

ing within 10m bins. This is only possible near the experimental site due to the

localised data. The result can be seen in Figure 4.3. While this has worked

reasonably well, it has the disadvantage of using a simple proximity ap-

proach. This means that a road is not considered as a whole if it is divided

into several sections. While this isn’t really a problem, a long dangerous

road would not be as prominent as a short dangerous section. At the same

time, a long section would be even more interesting to road planners, as

infrastructure improvements to such sections would have a greater impact.

To achieve this we used the DBSCAN algorithm presented in Section 2.2.4.2.

We chose this algorithm because it’s parameters are logically translatable

to the real world. The neighbourhood parameter ϵ can be expressed in me-

tres and describes the maximum distance for two detections to be consid-

ered „next to each other “. We decided to evaluate this parameter empiri-

cally by generating maps with an epsilon for 10m, 100m and 1000m. This

time, instead of simply rounding the location, we transformed the geolog-

ical data into radians. The second parameter is the number of measure-

ments required to be considered a hazardous location. Since we collected

the data over a period of 60 days and made a total of ≈ 70 trips, we chose

a minimum number of 10 detections. This effectively means that 15% of the

time someone cycled there, they were overtaken below the safety distance“.

Applying this clustering algorithm to the data with a ϵ = 100m resulted

in the map shown in Figure 4.4. The identified location belonging to clus-

ter 1 and 2, can be seen at https://sebastian-schuch.de/cluster/1 and

https://sebastian-schuch.de/cluster/2. The cluster with ID 0 did only

emerge shortly before finishing this thesis, therefore we were not able to ac-

quire a snapshot in time. The required neighbourhood size can be further

reduced as the data coverage increases, as the clusters can grow organically.

This will also avoid adding noise points to the identified clusters. Addition-

ally, during the slow data collection, we observed that the cluster with ID

0 and 1 slowly moved towards each other, suggesting that these two clus-

ters are likely to merge with increasing data coverage, indicating a long

strip without sufficient cycling infrastructure. The current state of the col-

lected data and identified clusters can be seen in Table 6.4. Based on this

data we could now rank the identified locations, by their absolute or relative

amount of hazardous situations. It is also possible to rank these clusters, for

example by average distance. The first would prioritise locations where a

lot of users encounter uncomfortable situations. The advantage here is that

it would maximise the overall benefit by ensuring that priority is given to

places where a lot of cyclists benefit from the changes. However, it runs

the risk of unfairly favouring areas where there are simply a high number

of cyclists. The second approach would take this into account, but is much

https://sebastian-schuch.de/cluster/1
https://sebastian-schuch.de/cluster/2
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Figure 4.2: shows the map of locations with the measured distance marked. This
includes the data points when no cars were present.

Figure 4.3: shows the map of locations where the distance was less than 1.85m or
1.5m safety distance, points are grouped by proximity and scaled by
frequency. This map is too cluttered to be useful, since it does not high-
light locations with a notable accumulation of dangerous encounters,
and only allows the visual identification of areas with a lack of danger-
ous encounters.

more susceptible to false conclusions based on chance alone. Areas where

few people cycle, but where there is a randomly occurring dangerous en-

counter every time, would be ranked high, even though the overall benefit

of improving the infrastructure elsewhere would be greater. However, these

considerations should be made by experts, as the interpretation of the data

should be done by the people responsible for the infrastructure. The data is

simply a tool to help them make better decisions, and it seems capable of

doing so.

Although we did not collect enough data due to time constraints, the clus-

ters identified do indeed support the first hypothesis. It is true that areas

without any infrastructure are not as prominent as areas with unusable “cy-

cling free„ , for example because of parked cars. While this may be a co-

incidence, it is interesting to note and should be kept in mind for further

analysis. Additionally, the location referenced in Figure 4.5 shows a par-

ticularly bad example of infrastructure. The cycle lane ends abruptly after
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Figure 4.4: shows the map with the cluster. As ϵ we have empirically determined
50m and 11 as the minimum number of points that correlate with ≈
33% of the times cycled there, due to the overall 33 trips performed. Due
to the very low range epsilon, the clusters are currently limited in size.
However it is expected that the clusters will grow organically as the data
coverage increases. It might be advantageous to actually further decrease
epsilon, since 50m, could result in two parallel streets being assigned to
the same cluster, despite never actually meeting. For this to be successful,
a much higher data coverage would be required.

a bend, only to begin again a few metres further on. This forces the cy-

clist out into the road for no apparent reason, causing drivers to overtake

closer than they would if the cyclist was already on the road. As the devel-

oped radar collects the same type of data as the openBikeSensor, the map

https://obs.adfc-darmstadt.de/ can be consulted for more insight into

the possible conclusions that can be drawn from sufficiently large data sets.

4.3 duty cycle & package loss

Figure 4.6 shows the measurement duration. The expected duration would

be at around 33ms, and sometimes above when individual measurements

have to be discarded due to a bad SNR ratio. However the fact that the his-

togram shows other accumulations at multiple of the expected measurement

duration, needed to be investigated. Investigating the received data and log-

ging the IOT output via UART, revealed that the problem was not part of

the embedded code. As can be concluded by gaps in the sequenceID in the

received data, the problem was caused by the Bluetooth Low Energy (BLE)

scan. While package loss is to be expected in a connection less protocol, the

amount of packages lost was too high.

We improved the amount of packages lost by changing the BLE scanner

settings to SCAN_MODE_LOW_LATENCY, CALLBACK_TYPE_ALL_MATCHES and

MATCH_MODE_AGGRESSIVE. However this only worked for the first 30min of a

cycling tour, after which the package loss significantly worsened. This was

caused by the BLE scan being downgraded automatically after 30min to the

„opportunistic “mode. This was revealed when Investigating the implemen-

https://obs.adfc-darmstadt.de/
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Figure 4.5: shows one of the locations identified by DBSCAN with ϵ = 100m and 7
as the minimum number of points. This location shows the end of one
cycle lane and the immediate start of another.

tation of the AOSP scanner code. At the time of writing this thesis this was

not specified in the BluetoothLeScanner documentation1.

// Maximum msec before scan gets downgraded to opportunistic mode

private static final int SCAN_TIMEOUT_MS = 30 * 60 * 1000;

.

We decided to circumvent this limitation by automatically stopping and

restarting the scan as soon as no package was received for more than 10s.

Since the sensor should at least broadcast every 2s this means that the scan

will be restarted as soon as at least 5 consecutive packages are lost. At the

same time scan will then not be restarted until at least one package is re-

ceived. This means that if no package is received for more than 30min after

a restart, android will again downgrade the scanner to opportunistic mode

to save power.

This solution more or less reduced the amount of package loss to a min-

imum while preserving the intended power save feature. If the user then

starts a new trip, eventually even in opportunistic mode a package will be

received, and the scanner mode will then be upgraded automatically again.

This solution provides a tradeoff between energy consumption and pack-

age loss, considering the fact that it allows to be used without any form of

user intervention.

1 https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner

https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner
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Figure 4.6: Shows the average measurement time histogram. As we configured the
sensor to measure every 30ms, we were not expecting the other data
points. Examining the data showed that the multiples of 30ms are caused
by lost measurements.





5
C O N C L U S I O N

Over the course of 6 months, we’ve researched, designed and evaluated a

prototype using the DSR method. This prototype performs the same mea-

surements as the OBS, but does not require any user interaction. We’ve im-

plemented 3 different versions, evaluating each implementation at the end

of a DSR cycle, using the knowledge gained as a basis for the next itera-

tion, iteratively improving the sensor until we’ve achieved an accuracy and

precision of a few centimetres. This required a fine balance of tuning the

radar configuration to achieve the optimal tradeoff between duty cycle, res-

olution and sensitivity. Analog to the CAP theorem improving one of these

aspects always means sacrificing performance in the others. Furthermore,

the final prototype not only measures the distance of passing cars, but also

includes the quality of the given measurement. This allows for very sophis-

ticated analysis and ensures a high level of data integrity. With the data

collected during the third experiment, we were able to conclude that we

were able to apply different analysis methods to extract knowledge about

the cycling infrastructure and prove the reliability of the data collected. Un-

fortunately, some valuable data was lost due to various reasons, such as the

loss of BLE packets, as well as hardware issues. Once these remaining issues

are resolved, we would argue that the prototype is ready for a larger scale

citizen science project.

By using DBSCAN we were able to identify the areas in our test road where

the safety distance was remarkably often not maintained. This is a very

promising result and exceeds the currently deployed analysis methods of

the OBS infrastructure of the ADFC Darmstadt. Therefore even if the radar

does not make it into the project, the new analysis methods could be used

to improve the current infrastructure running with the manually operated

OBS sensors.

However the device has some inherent problems. During the course of

writing the thesis we have encountered numerous situation that pose a sig-

nificant threat, but are not considered by the initial premise. Such as sud-

denly pulling out cars from a side street, cargo sticking out to the side and

many more. The problem is that adding enough radars to achieve a 360 de-

gree FOV would cause a significant cost overhead simply to cover these edge

cases.

5.1 interview with the adfc darmstadt

The Allgemeiner Deutscher Fahrrad-Club (ADFC) Darmstadt was kind enough

to give us an interview about their experiences with the OBS and their opin-

ion of the new prototype. The interview was conducted with Mr Görgen
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on the 14th of March, 2023. During this interview we presented the proto-

type and the collected data and asked for their opinion. In particular, we

discussed the need for the handlebar button when using the radar to distin-

guish between cars and other objects. Mr Görgen explained that the button

will most likely remain a necessary part, as the overall goal of the project is

to transparently communicate the safety of the infrastructure to city officials.

Only allowing data that has been manually marked as valid is a reliable way

to convince non-technical users of the legitimacy of the data being collected.

The button also plays a key role in ensuring that the data collected is only

collected on the street. As part of the project requirements, no data can be

collected on a path separated by a kerb, as this is not part of the road infras-

tructure according to the legal definition, and therefore there is no required

safety distance. The same logic applies to vehicles approaching cyclists on

narrow roads. As Mr Görgen explained, situations such as one-way streets

where cyclists are allowed to ride in both directions need to be assessed in

the full context, where the distance alone does not provide enough informa-

tion. This led to a brief discussion about possible improvements to the anal-

ysis methods. He mentioned that the website provides a very useful filtering

mechanism, but at the time of the interview, the website did not provide a

way to analyse the data for hotspots where the safety distance is not regu-

larly maintained, indicating that the presented application of the DBSCAN is

a new approach. Finally, we discussed the cost of an OBS sensor. Although

there is no definitive answer to this question, as the price depends on many

external factors, he estimated that the price would be between €50 and €100.

This could indicate that the price of the XM122 radar is below the cost of the

OBS, especially considering that the XM122 only requires the addition of a

power source, reducing the amount of assembly required.

5.2 future work

During the course of this thesis we’ve identified some aspects that could be

improved in future work. This section gives an overview of these aspects.

5.2.1 Refining the data

As we have presented several situations in this thesis that produce mea-

surements that are not technically cars overtaking the cyclist, the measured

distance is still correct and belongs to an interesting situation. Therefore, it

is crucial to consult an expert in the field of urban planning to decide how

to handle this data. We suggest that the data be treated as follows:

• Cars in the opposite lane - This data should just be kept as the mea-

surements are usually long distance, but if a car is coming towards

the cyclists and still falls below the safety distance, this should still be

highlighted and investigated to see if changes to the infrastructure can

resolve this.
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• Stationary objects to the right - This data should also be collected by

adding a radar to the right side, as the free space to the right is a

relevant factor in interpreting the distance to the left.

• Stationary objects to the left - This data should be recorded, but it

is crucial to identify whether an object is stationary by checking the

Doppler shift. This can be done by occasionally taking a measurement

optimised to measure the radial velocity of the target. This means sac-

rificing some distance measurements, but it is crucial to identify sta-

tionary cars as they are less relevant for analysis.

5.2.2 Streaming

Instead of using BLE broadcasts, it is important to switch to a lossless proto-

col. The packet loss is too great to be acceptable and causes too much data

loss. This is a problem that other researchers are already investigating, as it

is a known problem for low power wearables [29]. The reason we did not

move away from the current implementation, despite the fact that it caused

us some data loss, was the ease of use. Instead of having to pair your phone

and make sure a connection was established, the broadcast approach we

chose allowed you to just start cycling, as the sensor is automatically turned

on with the bike, and listening to the BLE broadcasts was always possible due

to the almost non-existent battery consumption. This convenience must be

maintained in order to maximise the adoption of the sensor. Therefore, we

need to find a way to maintain the comfort of the current implementation

while still being able to stream the data losslessly.

5.2.3 Hardware

At the time of writing, the available close range radars changed substan-

tially with the announcement of the A121 chip [4]. It is a successor to the

A111 and also has a 60Ghz radar. In particular, the SDK has been simplified

by combining all the services into one, which greatly improves performance

for our use case by solving the problems described in Section 3.1. This is

done by providing a much more fine-grained configuration, allowing step

length, number of sweeps and increased buffer sizes. Therefore, the experi-

ments performed in this thesis should be repeated with an A121 radar chip

for a direct comparison. At the same time, the experimental setups need to

be repeated with the XM122 chip in order to obtain a more accurate mea-

surement of the radar chip’s accuracy by eliminating the deficiencies of the

setup presented in Chapter 4 Furthermore, when starting a new develop-

ment iteration with a new prototype, consider replacing the USB-C power

supply with another connector that has a locking mechanism to avoid the

problem of lost data due to a loose connection.
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5.2.4 Measuring the distance to the right

One improvement to the experimental setup that was discovered but could

not be implemented in time is the ability to measure the distance to the

right of the cyclist. It is a legal requirement to keep a safety distance from

parked cars to avoid opening doors. It would only be necessary to mount

the sensor on the other side as well, since the detection algorithm already

works reasonably well in distinguishing between cars and walls, for example.

This would also make it possible to check whether cars are overtaking closer,

if the cyclist keeps the required distance from parked cars. See Figure 5.1

for an example of a situation where the safety distance was not maintained

due to parked cars. The use of a second sensor to determine the available

distance from parked cars on the right would further improve the quality

and reliability of the data, as it would be possible to assess whether the

cyclist is able to maintain the required distance from parked cars.

Figure 5.1: shows a typical situation where the safety distance has not been main-
tained due to parked cars. Using a second sensor to calculate the avail-
able distance from parked cars on the right would further improve data
quality and reliability.

5.2.5 Data Integrity and Privacy

At this stage, no measurements have been taken to ensure data integrity. This

is because the only filtering implemented in the application is by MAC ad-

dress. Therefore, a malicious actor could sniff the packets sent by the radar,

copy the MAC address to spoof it’s own, and inject synthetic data into the

system. One way to prevent this would be to implement a signature on the

packets that could be verified by the application. A user friendly way to

implement this would be to package the radar with a QR code containing



5.2 future work 49

the MAC and public key associated with the device. If this cannot be imple-

mented due to BLE limitations, a pairing process as specified by BL [8] is

required. The data sent is highly sensitive as the GPS data allows the user

to be tracked. Until enough users submit data, a de-anonymisation attack is

possible. Regardless of the number of users, the app should be extended to

allow the addition of zones where no measurements are taken, to avoid the

disclosure of important locations such as home or work. Furthermore, the

GDPR requires that the user has the possibility to delete their data, which is

currently not possible as the data is not personalised.

5.2.6 User Engagement

Once enough data has been collected from users, work can begin on a rout-

ing algorithm. The algorithm should be able to take the data into account

and calculate a route that minimises the risk of close encounters. The algo-

rithm should be able to optimise for different trade-offs, minimising addi-

tional distance while minimising time spent in dangerous areas.

In addition to the routing algorithm, the application should be extended

to increase user incentives, possibly using a gamification approach. The cur-

rent prototype does not provide any incentives for the user to use the app,

except for purely altruistic reasons. The app could be extended to include an

interesting dashboard showing the user’s statistics, such as the number of

close encounters, the distance travelled, a heat map of their own data. This

would also allow the user to see the impact of their actions by showing them

their own data as a heatmap.

5.2.7 Continuous Analysis

At the time of writing, the serverless backend was only deployed locally

and analysis was triggered manually. This was sufficient due to the limited

amount of data collected during the evaluation phase. However, when the

system is deployed in a production environment, the backend should be de-

ployed in such a way that each new batch of data submitted is automatically

used to update the currently found clusters. In theory, this should be effi-

cient due to the way the DBSCAN algorithm works. Before inserting the data

into the database, it is easy to check if it is in the neighbourhood of an exist-

ing cluster, or if it will lead to the formation of a new cluster. We expect that

the biggest edge case to be aware of is that new data may cause previously

separated clusters to merge, resulting in the possible need to update a large

amount of data. In addition, the total number of clusters will increase mas-

sively as the reach increases, which would massively increase the runtime

of the analysis if the analysis is restarted from scratch on each new batch of

data. Furthermore, it may be possible to use simple location-based grouping

to first separate the data into different regions, such as cities, and then do

the clustering on a per-region basis. Since we do not expect to find clusters
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that span multiple regions, this should be sufficient to reduce the runtime of

the analysis by allowing independent and parallel processing of the data.

5.3 lessons learned

During the development iterations we encountered a strange problem re-

garding the power supply soldered to the chip. Debugging the power sup-

ply with a ammeter showed that it was missing a 5.1kΩ resistor specified

in [12, p. 232] in Table 4-25. If this isn’t done most USB-C chargers won’t

deliver any power at all, and most power banks will shut down, since the

communication with the power sink fails. This resulted in the strange prob-

lem that the radar sensor could only be powered with USB-A chargers. With

this experience we recommend to redesign the power supply and not buy

cheap.

The second lesson learned is that performing the experiments and acquir-

ing sufficient data took way longer than initially planned. This is mostly

due to the intensive labor requirement of the experiments that can not be

automated in a meaningful way. Collecting data for approximately one third

of this thesis was just too much of a time sink to be worth it. As for the

next iteration, we would recommend acquiring volunteers beforehand, and

distributing the devices to them. In combination with an update to the app,

allowing to update the device firmware over bluetooth, this would allow the

acquisition of data to be much faster.
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6
S O U R C E C O D E

Listing 6.1: CFAR peak detection implementation.

struct detection

{

uint16_t peak_bin;

uint16_t peak_value;

double peak_distance;

double threshold;

};

#define detection_t struct detection

detection_t find_peak(uint16_t *data, acc_service_power_bins_metadata_t

power_bins_metadata)

{

detection_t detection = {0};

for (uint16_t i = 0; i < power_bins_metadata.bin_count; i++)

{

if (detection.peak_value < data[i]) // don’t bother

calculating cfar theshold if it’s below the current

peak anyway

{

// calculate cfar theshold

int sum = 0;

int count = 0;

double distance = power_bins_metadata.start_m +

(power_bins_metadata.length_m /

power_bins_metadata.bin_count) * i;

for (uint16_t j = 0; j < power_bins_metadata.

bin_count; j++)

{

if (j < i - CFAR_GUARD_WIDTH_LEFT || j >

i + CFAR_GUARD_WIDTH_RIGHT) // if

we are outside the CFAR area

{

sum += data[j];

count++;

}

}

int cfar_threshold = sum / count;

sum = 0;

// check if we have a peak at all required bins

bool is_peak = true;

for (uint16_t j = i - REQUIRED_ADJACIENT_BINS; j

<= i + REQUIRED_ADJACIENT_BINS; j++)
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{

int start = (j - (CUT_WIDTH - 1) / 2 < 0

? 0 : j - (CUT_WIDTH - 1) / 2);

int end = (j + (CUT_WIDTH - 1) / 2 >

power_bins_metadata.bin_count ?

power_bins_metadata.bin_count - 1 :

j + (CUT_WIDTH - 1) / 2);

for (uint16_t k = start; k <= end; k++)

{

sum += data[k];

}

sum = sum / (end - start + 1); //

calculate average

// if weighted amplitude is below

threshold

if (sum < ((CFAR_FACTOR * cfar_threshold

) + (cfar_threshold / distance) *

DISTANCE_FACTOR))

{

is_peak = false;

}

}

if (is_peak)

{

// we have a peak

detection.peak_bin = i;

detection.threshold = cfar_threshold;

detection.peak_value = sum;

detection.peak_distance = distance;

// if it’s the first peak

if (detection.first_bin == 0)

{

detection.first_bin = i;

detection.first_distance =

distance;

detection.first_value = sum;

}

}

}

}

return detection;

}

Listing 6.2: Distance detector implementation.

while (true)

{

success = acc_detector_distance_get_next(distance_handle, result,

number_of_peaks, &result_info);

if (!success)

{
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printf("acc_detector_distance_get_next ( ) failed\n");
break;

}

if (result_info.number_of_peaks == 0 && broadcast_data.

measurement_counts > 0) // no detection, with previous data

{

if (broadcast_data.measurement_counts > min_count)

{

update_beacon();

}

else

{

}

}

else if (result_info.number_of_peaks > 0) // detection

{

broadcast_data.measurement_counts++;

if (broadcast_data.measurement_counts == 1) // first detection

{

broadcast_data.avg_distance_mm = (uint16_t)(int16_t)(result

[0].distance_m * 1000);

broadcast_data.min_distance_mm = broadcast_data.

avg_distance_mm;

broadcast_data.min_distance_amplitude = (uint16_t)(int16_t)(

result[0].amplitude);

broadcast_data.background_noise_amplitude = (uint16_t)(

int16_t)(threshold_sensitivity * 1000);

}

else if (broadcast_data.measurement_counts < max_count) // not

first detection

{

broadcast_data.avg_distance_mm = (uint16_t)(int16_t)((

broadcast_data.avg_distance_mm * (broadcast_data.

measurement_counts - 1) + result[0].distance_m * 1000) /

(broadcast_data.measurement_counts));

if (broadcast_data.min_distance_mm > result[0].distance_m *

1000)

{

broadcast_data.min_distance_mm = (uint16_t)(int16_t)(

result[0].distance_m * 1000);

broadcast_data.min_distance_amplitude = (uint16_t)(

int16_t)(result[0].amplitude);

}

}

else

{

update_beacon();

}

}

}

Listing 6.3: Envelope implementation.
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while (true)

{

if (!acc_service_envelope_get_next_by_reference(envelope_handle, &

envelope_data, &envelope_result_info))

{

acc_service_deactivate(envelope_handle);

success = false;

printf("acc_service_envelope_get_next_by_reference ( ) failed\n");
break;

}

// print_(envelope_data, envelope_metadata.data_length);

// Analyze the data to extract distance, and if the measured object

has a different velocity than the background.

// See https://docs.acconeer.com/en/latest/handbook/a111/services/

sparse.html for general information on sparse services.

detection_t detection = ca_cfar_peak_detection(envelope_data,

envelope_metadata.data_length, &envelope_metadata);

// printf("Distance: %d, Amplitude: %d, threshold: %f\n", detection.

index, detection.amplitude, detection.threshold);

// after this the data could be discarded, if no fft is needed, and

a new measurement could be performed in parrallel to the

calculations below, if a higher measurement rate is needed.

// the detection condition is distance related, the closer the

object the higher the expected amplitude.

if (detection.amplitude > detection.threshold * ((envelope_metadata.

start_m + envelope_metadata.length_m) / detection.h) &&

max_count > broadcast_data.measurement_counts)

{

if (broadcast_data.measurement_counts == 0) // new measurement

initialize variables.

{

m_oldM = m_newM = detection.h;

m_oldS = 0.0f;

}

else

{

m_newM = m_oldM + (detection.h - m_oldM) / broadcast_data.

measurement_counts;

m_newS = m_oldS + (detection.h - m_oldM) * (detection.h -

m_newM);

// set up for next iteration

m_oldM = m_newM;

m_oldS = m_newS;

}

broadcast_data.measurement_counts++;

broadcast_data.avg_distance_mm = (uint16_t)(int16_t)(m_newM *

1000);

broadcast_data.avg_distance_variance = (uint16_t)(int16_t)(

m_newS * 1000); // remember to divide variance later again
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broadcast_data.background_noise_amplitude = ((broadcast_data.

background_noise_amplitude * (broadcast_data.

measurement_counts-1)) + detection.threshold) /

broadcast_data.measurement_counts;

// check if new distance is smaller than previous one.

if (broadcast_data.min_distance_mm == 0 || (detection.h * 1000)

< broadcast_data.min_distance_mm)

{

broadcast_data.min_distance_mm = (uint16_t)(int16_t)(

detection.h * 1000);

broadcast_data.min_distance_amplitude = detection.amplitude;

}

}

else

{

if (broadcast_data.measurement_counts > min_count || count >

max_count) // if a car was detected or 5 secs elapsed

{

#ifdef FIXED_MEASUREMENT_INTERVAL

double car_travel_length = 2.0 * (broadcast_data.

min_distance_mm / 1000.0) * tan(0.5 * 40 * M_PI / 180.0)

;

// calculate the estimated distance

the car traversed if the sensor would be stationary.

broadcast_data.avg_speed_cmps = (car_travel_length / ((

SUSPEND_TIME_BETWEEN_UPDATES_MS / 1000.0)) *

broadcast_data.measurement_counts) * 100; // calculate

the estimated relative speed of the car in m per second,

by dividing the distance by the time it took to measure

it. Due to bluetooth transmission restrictions, convert

it to cm/s and save it as uint16_t

#endif

update_beacon(&broadcast_data);

count = 0;

}

else

{

count++;

}

}

// Extract velocity, inter and intra frame velocity. Is the

approaching car closer to the background? if yes how much in

relation to the measurement interval -> speed.

// See https://docs.acconeer.com/en/latest/exploration_tool/algo/

a111/speed_sparse.html for more information.
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// package results to broadcast via GATT to the phone when the car

passed the bicycle.

// Result consists of: distance median or average, shortest distance

, velocity median or average, highest velocity, duration, and

some sort of estimation if it really was a car or not, and the

battery information if relevant.

// See https://docs.acconeer.com/en/latest/exploration_tool/algo/

a111/presence_detection_sparse.html#sparse-presence-detection

for ideas how to extract the estimation

// Sleep until wakeup

#ifdef FIXED_MEASUREMENT_INTERVAL

acc_integration_sleep_until_periodic_wakeup();

#endif

}

Listing 6.4: Power bin configuration.

const uint16_t BIN_SIZE = 20; // mm

const float start_m = 0.5f;

const float length_m = 3.5f;

#define MAX_DURATION 0.5

// max duration in seconds until broadcast

is forced.

#define MEASUREMENT_INTERVAL 25

// 25ms = 40Hz

const uint16_t MAX_MEASUREMENTS_PER_BROADCAST = MAX_DURATION * 1000 /

MEASUREMENT_INTERVAL; // number of measurements to take before

broadcasting data even when detection is not over.

const uint16_t MIN_MEASUREMENTS_FOR_DETECTION = 2;

const uint16_t CFAR_GUARD_WIDTH_LEFT = 10;

// left CFAR GUARD

const uint16_t CFAR_GUARD_WIDTH_RIGHT = CFAR_GUARD_WIDTH_LEFT; // right

CFAR GUARD

const uint16_t REQUIRED_ADJACIENT_BINS = 2;

// number of adjacient bins, to the left and right that

must be above threshold. 1 means 3 bins in total, with the center

bin being the peak.

const double CFAR_FACTOR = 1.4;

// used as factor for the calculated cfar

threshold. 0 means everything will be above threshold. 1 means that

the threshold is used as is. 2 means the amplitude must be twice the

claculated threshold

const double DISTANCE_FACTOR = 0.3;

// distance is used as a weight for the amplitude

. 1 means that the amplitude is used as is.

struct detection

{

uint16_t peak_bin;

uint16_t peak_value;
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double peak_distance;

double threshold;

};

#define detection_t struct detection

detection_t find_peak(uint16_t *data, acc_service_power_bins_metadata_t

power_bins_metadata);

/*Initialization code has been omitted*/

Listing 6.5: Power bin implementation.

while (true)

{

success = acc_service_power_bins_get_next(handle, data,

power_bins_metadata.bin_count, &result_info);

if (!success)

{

printf("acc_service_power_bins_get_next ( ) failed\n");
break;

}

detection_t detection = find_peak(data, power_bins_metadata);

if (detection.peak_bin != 0) // detection

{

// Welford’s online algorithm

broadcast_data.measurement_counts++;

// Update avg distance

int delta = detection.peak_distance * 1000 - broadcast_data.

avg_distance_mm;

broadcast_data.avg_distance_mm += delta / (broadcast_data.

measurement_counts);

int delta2 = detection.peak_distance * 1000 - broadcast_data

.avg_distance_mm;

m_squared += delta * delta2;

// Update avg amplitude

broadcast_data.avg_distance_amplitude = (broadcast_data.

avg_distance_amplitude * (broadcast_data.

measurement_counts - 1) + detection.peak_value) /

broadcast_data.measurement_counts;

// Update min distance

delta = detection.first_distance * 1000 - broadcast_data.

min_distance_mm;

broadcast_data.min_distance_mm += delta / (broadcast_data.

measurement_counts);

delta2 = detection.first_distance * 1000 - broadcast_data.

min_distance_mm;

min_squared += delta * delta2;

// Update min amplitude

broadcast_data.min_distance_amplitude = (broadcast_data.

min_distance_amplitude * (broadcast_data.
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measurement_counts - 1) + detection.first_value) /

broadcast_data.measurement_counts;

// Update background noise value

broadcast_data.background_noise_amplitude = (broadcast_data.

background_noise_amplitude * (broadcast_data.

measurement_counts - 1) + detection.threshold) /

broadcast_data.measurement_counts;

missed_measurements = 0;

if (broadcast_data.measurement_counts >=

MAX_MEASUREMENTS_PER_BROADCAST &&

MAX_MEASUREMENTS_PER_BROADCAST != 0) // if limit reached

, send data

{

// retrieve variances

broadcast_data.avg_distance_variance = m_squared / (

broadcast_data.measurement_counts - 1);

broadcast_data.min_distance_variance = min_squared / (

broadcast_data.measurement_counts - 1);

m_squared = 0;

min_squared = 0;

update_beacon(&broadcast_data);

missed_measurements = 0;

}

}

else

{

// no detection

if (broadcast_data.measurement_counts >

MIN_MEASUREMENTS_FOR_DETECTION || (missed_measurements >

MAX_MEASUREMENTS_PER_BROADCAST &&

MAX_MEASUREMENTS_PER_BROADCAST != 0)) // old measurement

to send, or no detection for too long

{

if (missed_measurements > REQUIRED_MISSES)

{

// retrieve variances

broadcast_data.avg_distance_variance = m_squared / (

broadcast_data.measurement_counts - 1);

broadcast_data.min_distance_variance = min_squared /

(broadcast_data.measurement_counts - 1);

m_squared = 0;

min_squared = 0;

// send data

update_beacon(&broadcast_data);

missed_measurements = 0;

}

else

{

missed_measurements++;

}

}
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else

{

if (missed_measurements > MAX_MEASUREMENTS_PER_BROADCAST

)

{

missed_measurements = 0;

update_beacon(&broadcast_data);

}

else

{

missed_measurements++;

}

}

}

#ifdef FIXED_MEASUREMENT_INTERVAL

// Wait for next measurement interval:

acc_integration_sleep_until_periodic_wakeup();

#endif

}

Listing 6.6: struct of the broadcasted data.

struct BroadcastData

{

// Structure for the broadcast data, current size is 18

bytes. using only uint16_t results in nicely padded data, and should

fit in one ble packet (29 bytes payload i think?)

uint16_t sequence_id; // Sequence id

of the data, just for debugging and checking no data was lost,

will eventually overflow and start over.

uint16_t avg_distance_mm; // average distance

measured in mm

uint16_t avg_distance_variance; // variance of the

distance measurement

uint16_t avg_distance_amplitude;

uint16_t min_distance_mm; // minimal distance

measured

uint16_t min_distance_variance;

uint16_t min_distance_amplitude; // amplitude of the minimal

distance measurement (indicated the likeliness of this being a

car or other bicycle or pedestrian etc)

// uint16_t avg_speed_cmps; // average speed

estimation of car, if available in cm/s

// uint16_t speed_variance; // variance of the

speed estimation

// uint16_t max_speed_cmps; // maximal speed

estimation of car, if available in cm/s

uint16_t measurement_counts; // number of

measurements used in the calculation of the above values

uint16_t background_noise_amplitude; // Initially measured

background noise amplitude

};
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Figure 6.1: The flow chart of the implemented Signal processing on the XM122 de-
vice. Most notably it consists of two loops, with unknown iterations. The
outer loop is the main loop, basically running forever and the inner loop
is the loop that handles the aggregation of measurements as long as a
car is detected. Once a car was detected at least a given amount of times,
the measurements are broadcasted to the phone once it is no longer de-
tected. Each measurement will use an individual threshold, ensuring a
constant low false positive rate, by using the CA-CFAR algorithm. This
also means that the performed background measurement is an artifact
of the previous implementation using a fixed threshold, and is no longer
necessary.
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Figure 6.2: Architectural overview of the artifact. The radar transmits measurements
via BLE. The Android app adds location information and stores the data.
At the end of the tour, the data is uploaded to the backend where it is
pre-processed and stored in a dynamodb. A node.js web application is
used to visualise the data, and additional lambdas are used to simplify
database access.
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(a) (b)

(c) (d)

Figure 6.3: images of the selected targets. (a) household radiator. it’s RCS is close to
a car above 1.5m, but the reflection is stronger at shorter ranges, most
likely due to the ribs increasing the RCS(b) trailer. For all intents and
purposes shows the RCS of a car(c) wall. (d) wooden wall, etc garden
fence

Listing 6.7: sam template.yml to deploy the infrastructure.

AWSTemplateFormatVersion: ’ 2010−09−09 ’

Transform: ’AWS: : S e r v e r l e s s −2016−10−31 ’

Descr ipt ion : An app t h a t r e c e i v e s data from a mobile app

, a ss ign s a c l u s t e r i f appl i cab le , and s t o r e s the

data in a DynamoDB t a b l e . Furthermore i t exposes a

r e s t api f o r querying s t a t i s t i c s , raw data and maps .

# Globals :

# Api :

# Cors :

# AllowMethods : " ’GET, POST , OPTIONS ’ "

# AllowHeaders : " ’ content −type ’ "

# AllowOrigin : " ’ * ’ "

# AllowCredentials : " ’ * ’ "

Parameters:

TABLENAME:

Type: S t r i n g

Descr ipt ion : The DynamoDB t a b l e f o r s t o r i n g data .

Defaul t : ’ raddar −data ’

REGIONNAME:
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(a) (b)

Figure 6.4: (a) front view of the sensor. (b) back view of the sensor.

Type: S t r i n g

Descr ipt ion : Defaul t region f o r deployment .

Defaul t : ’ eu− c e n t r a l −1 ’

AWSENVNAME:

Type: S t r i n g

Descr ipt ion : AWS Environment where code i s being

executed (AWS_SAM_LOCAL or AWS) .

Defaul t : ’AWS_SAM_LOCAL ’

Resources:

dataHandler:

# A funct ion t h a t wr i tes to a DynamoDB t a b l e on a

schedule

Type: ’AWS: : S e r v e r l e s s : : Function ’

P r o p e r t i e s :

Handler: handleData . lambda_handler

Runtime: python3 . 9

CodeUri: s r c /.

Descr ipt ion : A funct ion t h a t handles the data from

a DynamoDB t a b l e

MemorySize: 1024

Timeout: 240

P o l i c i e s :

# Read more about SAM pol i c y templates here
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Figure 6.5: Picture of the mounted sensor. The sensor is mounted under the saddle,
and the power supply can be either an external powerbank, an integrated
5V battery or any other supply such as compatible e-bikes and phones.
The handlebar width to each side is 0.35m, resulting in a total width
of 0.7m. This means the sensors measurements, have to be reduced by
0.35m in order to get the actual distance to the object, because the sensor
is mounted in the center. This also compensates for the blindspot of 0.3m
that we have due to possible direct leakage of the radar signal.

# ht tps :// docs . aws . amazon . com/ s e r v e r l e s s −

a ppl i c a t i o n −model/ l a t e s t /developerguide/

s e r v e r l e s s −pol icy −templates . html

- AWSLambdaExecute

- DynamoDBCrudPolicy:

TableName: ! Ref DataTable

Environment:

Va r i a b l es :

TABLE: ! Ref TABLENAME

REGION: ! Ref REGIONNAME

AWSENV: ! Ref AWSENVNAME

Events:

HttpPost:

Type: Api

P r o p e r t i e s :

Path: ’/data ’

Method: POST

HttpGet:

Type: Api

P r o p e r t i e s :

Path: ’/data ’

Method: GET
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Figure 6.6: shows the mount point of the camera. This is relevant, when considering
a visual interpretation of the recorded situations. The leftmost mounting
of the camera, causes the visual impression of the car being closer to the
cyclist, while at the same time causing the impression that the cyclist
was cycling not as far to the right as he actually was.

(a) (b)

Figure 6.7: (a) back view. (b) side view.

c lusterHandler :

# A funct ion t h a t wr i tes to a DynamoDB t a b l e on a

schedule

Type: ’AWS: : S e r v e r l e s s : : Function ’

P r o p e r t i e s :

Handler: g e t C l u s t e r s . lambda_handler

Runtime: python3 . 9

CodeUri: s r c /.

Descr ipt ion : A funct ion to query c l u s t e r s in an

area

MemorySize: 1024

Timeout: 240

P o l i c i e s :

# Read more about SAM pol i c y templates here

# ht tps :// docs . aws . amazon . com/ s e r v e r l e s s −

a ppl i c a t i o n −model/ l a t e s t /developerguide/

s e r v e r l e s s −pol icy −templates . html
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: those are the reference images. The images are taken from the reference
video.

- AWSLambdaExecute

- DynamoDBCrudPolicy:

TableName: ! Ref DataTable

Environment:

Va r i a b l es :

TABLE: ! Ref TABLENAME

REGION: ! Ref REGIONNAME

AWSENV: ! Ref AWSENVNAME

Events:

HttpGet:

Type: Api

P r o p e r t i e s :

Path: ’/data/ c l u s t e r ’

Method: GET
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(a) (b)

(c) (d)

(e)

Figure 6.9: shows the remaining reference images . The images are taken from the
reference video.

queryHandler:

# A funct ion t h a t wr i tes to a DynamoDB t a b l e on a

schedule

Type: ’AWS: : S e r v e r l e s s : : Function ’

P r o p e r t i e s :

Handler: queryData . lambda_handler

Runtime: python3 . 9

CodeUri: s r c /.

Descr ipt ion : A funct ion to query data

MemorySize: 1024

Timeout: 240

P o l i c i e s :

# Read more about SAM pol i c y templates here
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Figure 6.10: oncoming traffic example representing a value measurement. Google
Lens identified the car as a Mitsubishi colt of the fifth generation with
a width of 1.68m (Without mirrors). A rough estimation let us conclude
that in this case the remaining street width is approximately 1.68m as
well.

# ht tps :// docs . aws . amazon . com/ s e r v e r l e s s −

a ppl i c a t i o n −model/ l a t e s t /developerguide/

s e r v e r l e s s −pol icy −templates . html

- AWSLambdaExecute

- DynamoDBCrudPolicy:

TableName: ! Ref DataTable

Environment:

Va r ia b l es :

TABLE: ! Ref TABLENAME

REGION: ! Ref REGIONNAME

AWSENV: ! Ref AWSENVNAME

Events:

HttpGet:

Type: Api

P r o p e r t i e s :

Path: ’/data/query ’

Method: GET

Events:

HttpGet:

Type: Api

P r o p e r t i e s :

Path: ’/data/query ’

Method: POST

graphHandler:
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# A funct ion t h a t wr i tes to a DynamoDB t a b l e on a

schedule

Type: ’AWS: : S e r v e r l e s s : : Function ’

P r o p e r t i e s :

Handler: getGraphs . lambda_handler

Runtime: python3 . 9

CodeUri: s r c /.

Descr ipt ion : A funct ion to query graphs

MemorySize: 1024

Timeout: 240

P o l i c i e s :

# Read more about SAM pol i c y templates here

# ht tps :// docs . aws . amazon . com/ s e r v e r l e s s −

a ppl i c a t i o n −model/ l a t e s t /developerguide/

s e r v e r l e s s −pol icy −templates . html

- AWSLambdaExecute

- DynamoDBCrudPolicy:

TableName: ! Ref DataTable

Environment:

Va r i a b l es :

TABLE: ! Ref TABLENAME

REGION: ! Ref REGIONNAME

AWSENV: ! Ref AWSENVNAME

Events:

HttpGet:

Type: Api

P r o p e r t i e s :

Path: ’/data/graph ’

Method: GET

DataTable:

Type: AWS::DynamoDB::Table

D e l e t i o n P o l i c y : Retain

P r o p e r t i e s :

TableName: ! Ref TABLENAME

A t t r i b u t e D e f i n i t i o n s :

- AttributeName: item_id

Attr ibuteType: S

- AttributeName: time_stamp

Attr ibuteType: N

KeySchema:

- AttributeName: id

KeyType: HASH

- AttributeName: time_stamp

KeyType: RANGE

ProvisionedThroughput:
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ReadCapacityUnits: 1

WriteCapacityUnits : 1

Listing 6.8: python handler to add and scan all data.

import simplejson as json

import os

import boto3

import logging

client = boto3.client( ’dynamodb’)
log = logging.getLogger()

log.setLevel(logging.DEBUG)

def lambda_handler(event, context):

table_name = os.environ[ ’TABLE’]
region = os.environ[ ’REGION’]
aws_environment = os.environ[ ’AWSENV’]
if os.environ[ ’AWS_SAM_LOCAL’]:

data_table = boto3.resource(

’dynamodb’, endpoint_url="http://dynamodb:8000 ").Table(
table_name)

else:

data_table = boto3.resource( ’dynamodb’).Table(table_name)
log.debug(event[ ’body’])
if event[ ’httpMethod ’] == ’GET’:

return load_data(data_table)

elif event[ ’httpMethod ’] == ’POST’:
return store_data(data_table, json.loads(event[ ’body’])[ ’data ’])

elif event[ ’httpMethod ’] == ’OPTIONS’:
return {

’statusCode ’: 200,

’headers ’: {

’Access−Control−Allow−Origin ’: ’ * ’,
’X−Requested−With ’: ’ * ’,
’Access−Control−Allow−Headers ’: ’Content−Type,X−Amz−Date

, Authorization ,X−Api−Key, x−requested−with ’,
’Access−Control−Allow−Methods’: ’POST,GET,OPTIONS’}

}

else:

return {

’statusCode ’: 501,

’body’: json.dumps( ’Not implemented! ’)
}

def load_data(data_table):

log.info("Loading items from table ")
response = data_table.scan(

)

log.info(response)

return {

’statusCode ’: 200,
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’body’: json.dumps(response[ ’ Items ’]),
’headers ’: {

’count ’: response[ ’Count ’],
’Access−Control−Allow−Origin ’: ’ * ’,
’X−Requested−With ’: ’ * ’,
’Access−Control−Allow−Headers ’: ’Content−Type,X−Amz−Date ,

Authorization ,X−Api−Key, x−requested−with ’,
’Access−Control−Allow−Methods’: ’POST,GET,OPTIONS’}

}

def store_data(data_table, data):

log.info("Adding { } items to table ".format(len(data)))
for item in data:

log.debug(item)

try:

# convert data to dynamodb comaptible values if they are in

the post data

if ’speed ’ in item:

item[ ’speed ’] = int(item[ ’speed ’]*3.6)
if ’ownSpeedAccuracy’ in item:

item[ ’ownSpeedAccuracy’] = int(item[ ’ownSpeedAccuracy’
]*3.6)

# round gps accuracy to integer

if ’gpsAccuracy ’ in item:

item[ ’gpsAccuracy ’] = int(item[ ’gpsAccuracy ’]*10)
if ’bearing ’ in item:

item[ ’bearing ’] = int(item[ ’bearing ’]*10)

# convert lat and lon to integer

if ’ lat ’ in item:

item[ ’ lat ’] = int(item[ ’ lat ’]*1000000000)
if ’ lon ’ in item:

item[ ’ lon ’] = int(item[ ’ lon ’]*1000000000)
response = data_table.put_item(Item=item)

except Exception as e:

log.error("Error adding item to table ")
log.error(item)

return {

’statusCode ’: 400,

’body’: json.dumps(str(e)),

}

log.info(response)

if response[ ’ResponseMetadata ’][ ’HTTPStatusCode’] != 200:

log.error("Error adding item to table ")
log.error(item)

return response

return {

’statusCode ’: 200,

’body’: " "
}

Listing 6.9: python handler to query specific data.
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import simplejson as json

import sys

import os

import boto3

import logging

client = boto3.client( ’dynamodb’)
log = logging.getLogger()

# log.setLevel(logging.ERROR)

def lambda_handler(event, context):

table_name = os.environ[ ’TABLE’]
region = os.environ[ ’REGION’]
aws_environment = os.environ[ ’AWSENV’]
# if this is running in a local environment, overwrite the endpoint

url

if os.environ[ ’AWS_SAM_LOCAL’]:
data_table = boto3.resource(

’dynamodb’, endpoint_url="http://dynamodb:8000 ").Table(
table_name)

else:

data_table = boto3.resource( ’dynamodb’).Table(table_name)

if event[ ’httpMethod ’] == ’GET’ or event[ ’httpMethod ’] == ’POST’:

body = json.loads(event[ ’body’])
if len(body) == 0:

return { ’statusCode ’: 400, ’body’: json.dumps( ’No query
parameters provided! ’)}

filterExpressionString = " "
filterExpressionAttributeValues = {}

# for all but the last parameter, add AND to the filter string

for key, values in body.items():

# TODO: cluster ID is a special case, as all cluster ID’s

should be returned

# if key == "cluster_id":

# filterExpressionString += key + " = :" + key + " OR "

# filterExpressionAttributeValues[":" + key] = values

# when item ID is selected, only return the items with the

given ID

if key == "item_id":
filterExpressionString += key + " = : " + key + " AND "
filterExpressionAttributeValues[" : " + key] = values

else:

# for all other parameters, select greater than min and

less than max

filterExpressionString += key + " BETWEEN : " + \

key + "Min AND : " + key + "Max AND "
filterExpressionAttributeValues[" : " + key + "Min"] =

values[0]
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filterExpressionAttributeValues[" : " + key + "Max"] =

values[1]

# remove the last AND

filterExpressionString = filterExpressionString[:-4]

return load_data(data_table, filterExpressionString,

filterExpressionAttributeValues)

else:

return {

’statusCode ’: 501,

’body’: json.dumps( ’Not implemented! ’)
}

def load_data(data_table, selectedFilterString,

selectedFilterAttributeValues):

loadedItems = []

log.info("Loading items from table ")
response = data_table.scan(

FilterExpression=selectedFilterString,

ExpressionAttributeValues=selectedFilterAttributeValues

)

# append data

loadedItems.extend(response[ ’ Items ’])
# if response is chuncked, load all items

while ’LastEvaluatedKey ’ in response:

response = data_table.scan(

FilterExpression=selectedFilterString,

ExpressionAttributeValues=selectedFilterAttributeValues,

ExclusiveStartKey=response[ ’LastEvaluatedKey ’]
)

loadedItems.extend(response[ ’ Items ’])

log.info("Items loaded from table ")
return {

’statusCode ’: 200,

’body’: json.dumps(loadedItems),

’headers ’: {

’count ’: len(loadedItems),

’Access−Control−Allow−Origin ’: ’ * ’}
}

Listing 6.10: python handler to query for clusters.

import simplejson as json

import os

import boto3

import logging

client = boto3.client( ’dynamodb’)
log = logging.getLogger()

#log.setLevel(logging.DEBUG)
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def lambda_handler(event, context):

table_name = os.environ[ ’TABLE’]
region = os.environ[ ’REGION’]
aws_environment = os.environ[ ’AWSENV’]
if os.environ[ ’AWS_SAM_LOCAL’]:

data_table = boto3.resource(

’dynamodb’, endpoint_url="http://dynamodb:8000 ").Table(
table_name)

else:

data_table = boto3.resource( ’dynamodb’).Table(table_name)

if event[ ’httpMethod ’] == ’GET’:
return load_data(data_table)

else:

return {

’statusCode ’: 501,

’body’: json.dumps( ’Not implemented! ’)
}

def load_data(data_table):

loadedItems = []

# get all data where clusterID is not -1

response = data_table.scan(

FilterExpression="clusterID > : clusterID",
ExpressionAttributeValues={

’ : clusterID ’: -1

}

)

# append data

loadedItems.extend(response[ ’ Items ’])
# if response is chuncked, load all items

while ’LastEvaluatedKey ’ in response:

response = data_table.scan(

FilterExpression="clusterID > : clusterID",
ExpressionAttributeValues={

’ : clusterID ’: -1

},

ExclusiveStartKey=response[ ’LastEvaluatedKey ’]
)

loadedItems.extend(response[ ’ Items ’])

log.info("Items loaded from table ")
return {

’statusCode ’: 200,

’body’: json.dumps(loadedItems),

’headers ’: {

’count ’: len(loadedItems),

’Access−Control−Allow−Origin ’: ’ * ’}
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}

Listing 6.11: bootstrap script.

#!/usr/bin/env bash

set -e

# create the dynamodb container with

# docker network create lambda-local

# docker run -d -v "$PWD":/dynamodb_local_db -p 8000:8000 --network

lambda-local --name dynamodb amazon/dynamodb-local

docker start dynamodb

aws dynamodb create-table --table-name raddar-data --attribute-

definitions AttributeName=item_id,AttributeType=S AttributeName=

time_stamp,AttributeType=N --key-schema AttributeName=item_id,

KeyType=HASH AttributeName=time_stamp,KeyType=RANGE --provisioned-

throughput ReadCapacityUnits=5,WriteCapacityUnits=5 --endpoint-url

http://localhost:8000

cd raddar-backend

sam local start-api --docker-network lambda-local

docker stop dynamodb

6.1 tables

Table 6.1: Statistics of each individual measurement series for the envelope service.
The mean, standard deviation, count, minimum and maximum of the dis-
tance measurements are shown. For each series the standard deviation
is small, indicating very consistent measurements, but some series have
measurements that are siginficantly different from the actual setup, indi-
cating the experimental setup was not stable.

mean (m) std (mm) count minimum (m) maximum (m)

datetime note

2023-01-09 radiator - 0.5 0.496 1.67 214 0.493 0.504

radiator - 1 1.016 0.51 228 1.014 1.017

radiator - 1.5 1.549 1.07 217 1.545 1.552

radiator - 2 2.028 0.61 250 2.027 2.034

radiator - 2.5 2.510 0.52 169 2.509 2.512

radiator - 3 3.002 6.94 175 2.986 3.018

2023-01-10 radiator - 0.5 0.530 0.68 222 0.524 0.531

radiator - 1 1.012 0.38 211 1.011 1.013

radiator - 1.5 1.557 1.18 153 1.554 1.561

Continued on next page
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Table 6.1: Statistics of each individual measurement series for the envelope service.
The mean, standard deviation, count, minimum and maximum of the dis-
tance measurements are shown. For each series the standard deviation
is small, indicating very consistent measurements, but some series have
measurements that are siginficantly different from the actual setup, indi-
cating the experimental setup was not stable.

mean (m) std (mm) count minimum (m) maximum (m)

datetime note

radiator - 2 2.031 0.53 157 2.030 2.032

radiator - 2.5 2.533 0.65 210 2.531 2.534

radiator - 3 3.029 0.88 218 3.026 3.031

2023-01-14 radiator - 0.5 0.514 0.55 233 0.513 0.518

radiator - 1 1.064 0.92 222 1.061 1.071

radiator - 1.5 1.709 2.59 212 1.703 1.717

radiator - 2 2.042 0.58 69 2.041 2.043

radiator - 2.5 2.523 0.67 87 2.521 2.524

radiator - 3 3.062 0.98 108 3.059 3.064

2023-01-19 snow - 2.5 2.516 1.20 280 2.511 2.518

2023-01-26 wall - 0.5 0.503 0.75 176 0.501 0.505

wall - 1 0.642 202.38 215 0.485 1.476

wall - 1.5 1.503 1.27 145 1.500 1.506

wall - 2 1.989 1.53 223 1.985 1.992

wall - 2.5 2.365 315.46 130 0.835 3.048

wall - 3 2.795 432.22 57 1.395 3.395

2023-01-27 trailer - 0.5 0.488 4.89 202 0.482 0.505

trailer - 1 1.020 1.83 240 0.999 1.031

trailer - 1.5 1.510 0.50 170 1.509 1.511

trailer - 2 2.004 0.77 225 2.002 2.007

trailer - 2.5 2.485 1.19 214 2.482 2.488

trailer - 3 2.995 1.65 211 2.973 2.997
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Table 6.2: Statistics of each individual measurement series. The mean, standard devi-
ation, count, minimum and maximum of the distance measurements are
shown. For each series the standard deviation is small, indicating very
consistent measurements, but some series have measurements that are
siginficantly different from the actual setup, indicating the experimental
setup was not stable.

mean (m) std (mm) count minimum (m) maximum (m)

datetime note

2023-02-15 Trailer - 0.5 0.522 2.94 733 0.518 0.531

Trailer - 1 1.004 2.71 687 0.997 1.011

Trailer - 1.5 1.514 3.24 502 1.506 1.524

Trailer - 2 2.014 4.43 347 2.004 2.025

Trailer - 2.5 2.506 3.06 432 2.499 2.516

radiator - 0.5 0.506 2.43 852 0.499 0.512

radiator - 1 1.006 2.42 567 0.999 1.010

radiator - 1.5 1.507 2.24 757 1.500 1.513

radiator - 2 2.020 3.39 514 2.009 2.033

radiator - 2.5 2.502 4.07 782 2.489 2.518

2023-02-16 wall - 0.5 0.500 3.22 781 0.491 0.509

wall - 1 1.009 2.01 858 0.999 1.017

wall - 1.5 1.509 3.89 361 1.498 1.531

Table 6.3: Relevant locations and their safety index, with measurements only below
the safety distance.

longitude latitude avgDistanceM avgAmplitude measurementCount

0 8.619861 49.682885 0.535 2401.0 1

1 8.619971 49.682871 0.701 2247.0 1

45 8.635953 49.684804 0.787 3563.0 1

109 8.644774 49.688862 0.807 3639.0 1

36 8.633829 49.683619 0.828 2122.0 1

47 8.636054 49.684848 0.837 2193.0 1

9 8.624846 49.681274 0.859 1782.0 1

176 8.663181 49.695655 0.996 2804.0 1

49 8.636510 49.685105 1.005 3120.0 1

15 8.625725 49.681548 1.021 2950.0 1
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